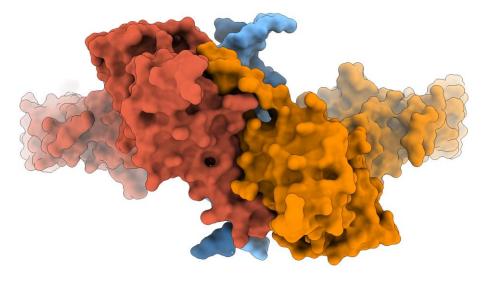


Revolutionizing Immunology with Oral Medicines

January 2025

Forward Looking Statements

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. These statements include, but are not limited to, implied and express statements about our strategy, business plans and objectives for our programs; plans and timelines for the preclinical and clinical development of our product candidates; including the therapeutic potential, clinical benefits and safety profiles of such product candidates; expectations regarding timing, success and data announcements of ongoing preclinical studies and clinical trials; our ability to initiate new clinical programs, including plans to submit investigational new drug (IND) applications; our ability to deliver additional investigational drugs into the clinic by 2026; the initiation, timing, progress and results of our current and future preclinical studies and clinical trials of our current and prospective product candidates; our plans to develop and commercialize our current and any future product candidates and the implementation of our business model and strategic plans for our business, current; any future product candidates; and our financial condition and expected cash runway into mid-2027. All statements other than statements of historical facts contained in this presentation, including express or implied statements regarding our strategy, future financial condition, future operations, projected costs, prospects, plans, objectives of management and expected market growth, are forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as "anticipate," "upcoming," "assume," "believe," "could," "estimate," "expect," "goal," "intend," "may," "milestones," objective, or the negative of these terms or other comparable terminology. We may not actually achieve the plans, intentions or expectations of our forward-looking statements, and you should not place undue reliance on our forward-looking statements. You should not re


Any forward-looking statements are based on management's current expectations and beliefs and are subject to a number of risks, uncertainties and important factors that may cause actual events or results to differ materially from those expressed or implied by any forward-looking statements including, without limitation, risks associated with: the timing and anticipated results of our current and future preclinical studies and clinical trials, supply chain, strategy and future operations; the delay of any current and future preclinical studies or clinical trials or the development of our drug candidates; the risk that the results of prior preclinical studies and clinical trials may not be predictive of future results in connection with current or future preclinical studies and clinical trials, including those for KT-474/SAR-444656, KT-621 and KT-295; our ability to successfully demonstrate the safety and efficacy of our drug candidates; the timing and outcome of any interactions with regulatory authorities; obtaining, maintaining and protecting our intellectual property; our relationships with existing and future collaboration partners; the impacts of current macroeconomic and geopolitical events. In addition, any forward-looking statements represent Kymera's views only as of today and should not be relied upon as representing its views as of any subsequent date. Kymera explicitly disclaims any obligation to update any forward-looking statements, except as required by law. No representations or warranties (expressed or implied) are made about the accuracy of any such forward-looking statements. As a result of these risks and others, including those set forth in our filings with the SEC, actual results could vary significantly from those anticipated in this presentation, and our financial condition and results of operations could be materially adversely affected.

Certain information contained in this presentation and statements made orally during this presentation relate to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party studies, publications, surveys and other data to be reliable as of the date of the presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, no independent sources have evaluated the reasonableness or accuracy of the Company's internal estimates or research, and no reliance should be made on any information or statements made in this presentation relating to or based on such internal estimates and research. This presentation contains trademarks, trade names and service marks of other companies, which are the property of their respective owners.

Revolutionizing Immunology: Oral Drugs with Biologics-Like Efficacy

Science-driven clinical stage organization with industry-leading oral immunology pipeline

- Targeted Protein Degradation (TPD) leader
- Best-in-industry capabilities in hit finding and optimization of oral degraders
- Unique target selection strategy pursuing traditionally undrugged targets
- Portfolio poised to disrupt conventional treatment paradigms

By combining the **"right target" with the disruptive potential of TPD**, **Kymera is delivering oral therapies with biologics-like profiles** for the first time in industry with the potential to expand access to millions of patients around the world

Clear Vision and History of Strong Execution

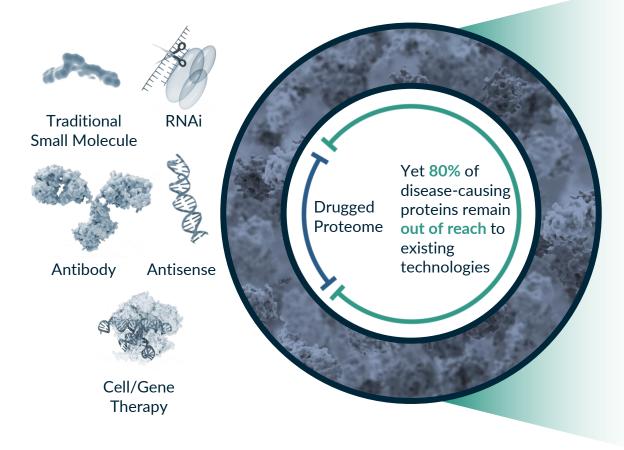
VISION

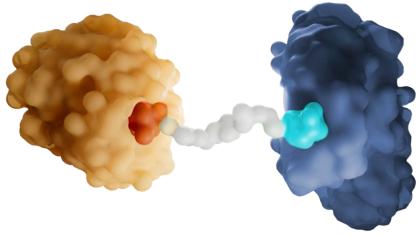
- Reinventing the treatment of human disease as a fully integrated commercial global biotech
 - Building a world-class immunology development team to execute on large Phase 2/3 trials

Raised \$1.7B to date, with \$850M¹ of cash on hand, providing a runway to mid-2027

EXECUTION

Delivered 5 new
investigational degrader
drugs into the clinic since
2020, and on path to
deliver a total of
10 by 2026


IMPACT


- Dosed over 300 healthy
 volunteers/patients to date
 across clinical pipeline,
 demonstrating:
 - >90% target degradation in all programs
 - Desired safety and efficacy profiles

Targeted Protein Degradation: New Modality Expanding the Range of Treatable Disease

Existing modalities have limitations that restrict their application leaving millions of patients without adequate treatment options.

Targeted Protein Degradation

can unlock the undrugged proteome

- Small molecule-based modality with gene silencing power
- Not limited by delivery, target or tissue/organ type; disease agnostic
- Oral delivery
- Efficient development/manufacturing
- Validated across multiple FDA-approved drugs with >\$17 billion in combined peak WW sales¹

Immunology: A Large, Underserved Market

~160M Total Patients Across Key Immunologic Diseases¹

Advanced Therapies: ~5M (3%)

>\$100B -

- ~5M patients (3% of total diagnosed) are on systemic advanced therapies with >\$100B in annual sales for key I/I indications²
- 2/3 of those therapies are injectable biologics

Non-Advanced Therapies: ~90M (58%)

Untreated ~62M (39%)

->\$500B?

- ~ 97% of the diseased population does not have access to advanced therapies
- Enormous untapped market potential

Oral Degraders with Biologics-Like Profiles Can Disrupt the Immunology Market

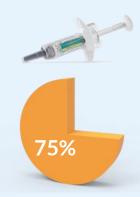
- Displace injectable biologics
- Offer a convenient highly effective advanced therapy to the 97% unserved and underserved patients

©2025 Kymera Therapeutics KYMERA 6

Small Molecule Oral Degraders Can Transform Immunology

Potentially Superior Profile to Injectable Biologics and Traditional Small Molecule Inhibitors

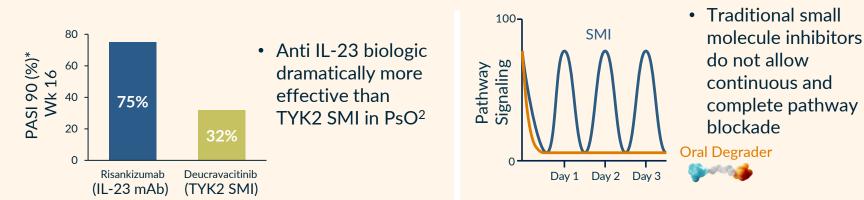
Biologics have several limitations:



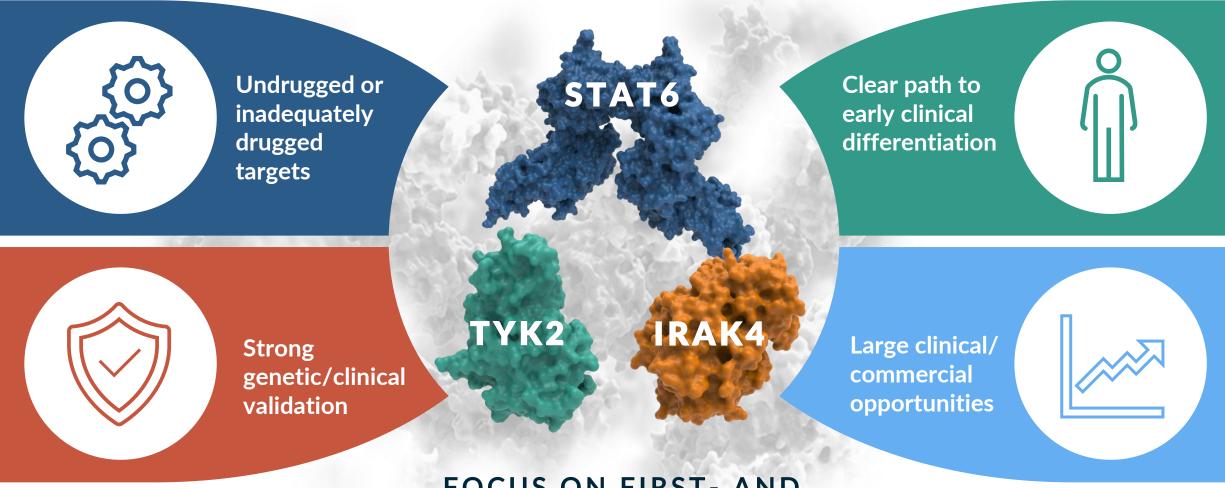
Skyrizi

risankizumab-rzaa

- Expensive, challenging to prescribe/reimburse
- Immunogenicity
- Cold storage
- Inconvenient and/or painful route of administration for patients


Orals preferred by most patients:

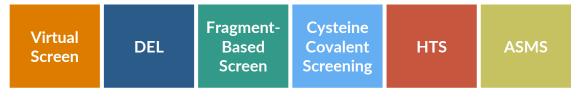
 In multiple surveys^{1,}
 75% of patients would switch from injectable biologics to oral with similar profile



Traditional small molecule inhibitors (SMI) insufficiently block pathways, limiting efficacy:

Oral degraders have unique potential to provide **comparable pathway inhibition to biologics**, with the convenience of **oral dosing**, and potentially access **broader patient populations**

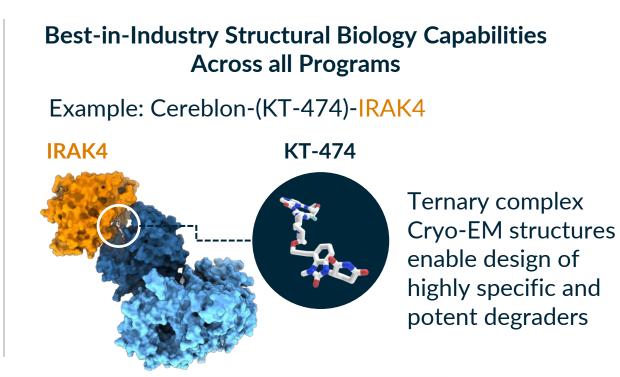
Unique Target Selection Strategy Drives Best-In-Class Pipeline



FOCUS ON FIRST- AND BEST-IN-CLASS OPPORTUNITIES

Industry Leader at Developing Oral Degrader Drugs

Hit Finding, Structural Biology and Chemistry


Comprehensive Proprietary Technologies to Identify Novel Ligands to Undrugged Proteins

- Transcription Factors
 E3 Ligases
- Scaffolding Proteins Others

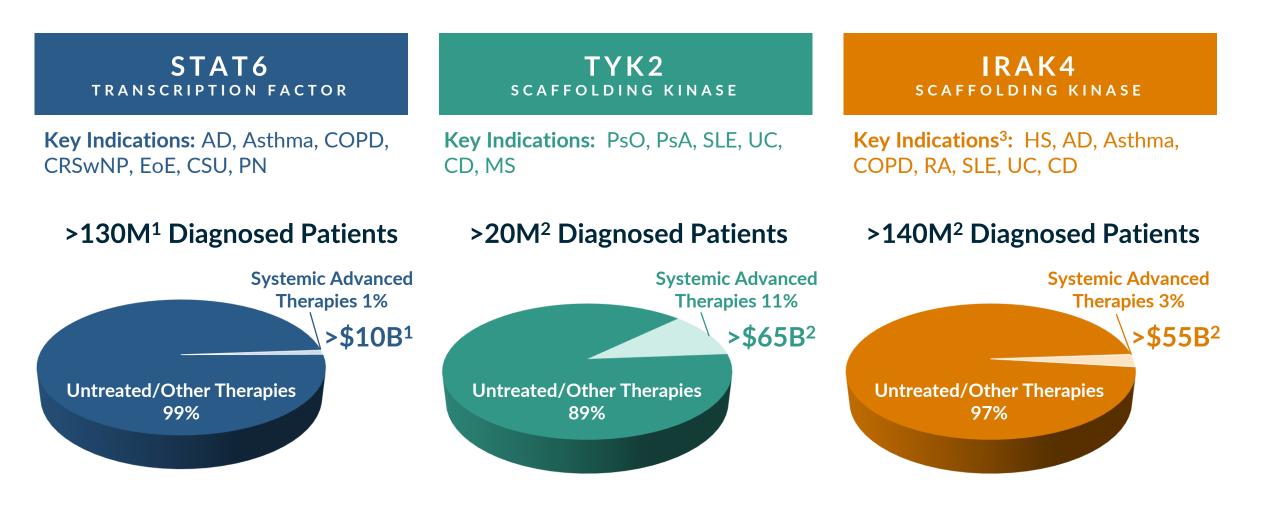
Leading to:

>8 development candidates, including >4 targeting undrugged transcription factors

Highly potent degraders (sub-nanomolar) with refined drug-like properties (orally bioavailable **World-Class Chemistry:** with systemic distribution to all target tissues), and comprehensive understanding of PK/PD, resulting in impeccable translation of our pipeline into the clinic across programs

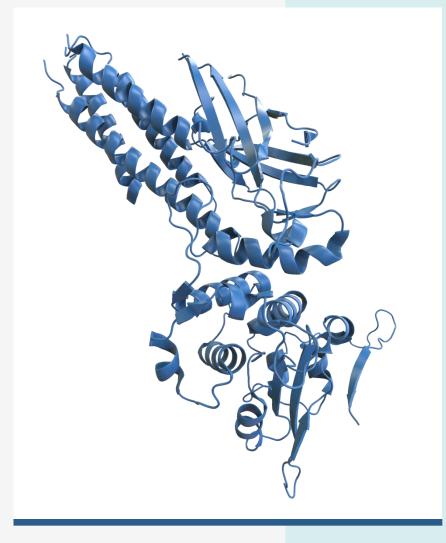
Building the Best-in-Industry Oral Immunology Pipeline

	Potential Indications	IND-Enabling	Phase 1	Phase 2	Upcoming Milestones		
Kymera Who	lly-Owned						
STAT6	AD, Asthma, COPD, PN, CRSwNP, EoE, BP, others	KT-621			Ph1 HV Data: 2Q25 Ph1b AD Data: 4Q25 Ph2b AD Start: 4Q25 Ph2b Asthma Start: 1Q26		
TYK2	Psoriasis, IBD, PsA, Lupus, others	KT-295			Ph1 HV Start: 2Q25 Ph1 HV Data: 4Q25		
Transcription Factor	Lupus, Sjogren's, RA, IBD, others	Undrug	ged target to be disc	losed in 1H25	FIH: Early 2026		
Partnered with Sanofi (Kymera 50/50 US Opt-In Potential) ¹							
IRAK4	HS, AD, RA, Asthma, KT-474 - HS			Ph2b Completion: HS: 1H26 AD: Mid-2026			
	IBD, others ²	KT-474 - AD					
Valı	ue Proposition: Co	ombining the conver	nience of oral drugs	and the efficacy	/ of biologics to		


expand access to advanced therapies for millions of patients around the world

¹KT-474 (SAR444656) partnered with Sanofi, with Kymera option to participate in the development and commercialization, and 50/50 profit split, in the United States. Double digit tiered royalties in ROW. ²Current indications: HS and AD. Other diseases shown, where IL-1R/TLR pathway has been implicated in pathogenesis, are additional potential opportunities.

Oral Degraders in Immunology With Significant Market Potential


First-In-Industry: Orals with Biologics-Like Profiles Could Change the Commercial Landscape

¹GlobalData (2023 diagnosed prevalent patient population and forecasted sales for approved systemic advanced therapies for AD, Asthma, and COPD only in US/EU5/JP) ²GlobalData (2023 diagnosed prevalent patient population and forecasted sales for approved systemic advanced therapies in US/EU5/JP) ³Current indications: HS and AD. Other diseases shown, where IL-1R/TLR pathway has been implicated in pathogenesis, are additional potential opportunities

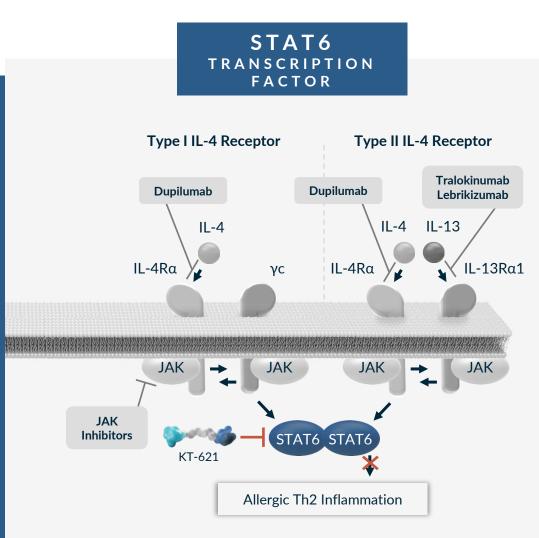
©2025 Kymera Therapeutics

KYMERA 11

First-in-Class Oral STAT6 Degrader Program Dupilumab-like activity in a pill

STAT6 Biology and Target Rationale

Target Biology and Rationale

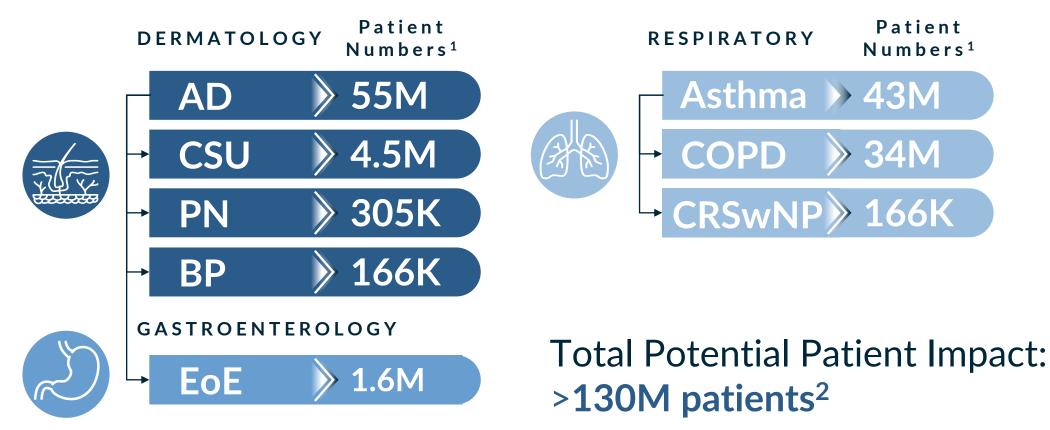

- STAT6 is the specific transcription factor required for IL-4 and IL-13 cytokine signaling
- STAT6 regulated cytokines are clinically validated targets for allergic diseases

Human and Mouse Genetics

- Gain of function (GOF) mutations of STAT6 cause severe allergic diseases in human
- STAT6 KO mice develop normally, are viable and fertile
- STAT6 partial loss-of-function, healthy, and protects from Th2driven asthma

Clinical Pathway Validation

- Dupilumab, an IL-4Rα monoclonal Ab that blocks IL-4/IL-13 signaling, has been approved in: Atopic dermatitis, Asthma, COPD, CRSwNP, Eosinophilic Esophagitis, Prurigo Nodularis, and has positive Phase 3 data in Bullous Pemphigoid and is in development for multiple additional indications
- STAT6 degradation can fully block IL-4/IL-13 signaling*


Adapted from Junttila. *Front Immunol.* 2018; Sharma et al. *J Exp Med.* 2023; Suratannon et al. *J Allergy Clin. Immunol.* 2022; Takeuchi et al. *J Allergy Clin Immunol.* 2022; *Statements regarding STAT6 degrader biology throughout this presentation are based upon preclinical experiments in human cells and preclinical species conducted by Kymera

STAT6 Degrader Advantage

- STAT6 is the specific and essential transcription factor in the IL-4/13 pathway
- Occupancy based approaches (e.g., SMI) unlikely to block pathway fully in a pharmacologically relevant manner
- However, degradation of STAT6 can fully block IL-4/IL-13 signaling in vitro and in vivo

Oral STAT6 Degraders Can Transform the Treatment Paradigm in Multiple Indications De-risked by Dupilumab

Numerous indication opportunities across multiple therapeutic areas de-risked by dupilumab

STAT6 degradation leading to full pathway inhibition has the potential to deliver dupilumab-like activity Oral degrader medicines offer opportunity to reach broader patient populations

1GlobalData (2023 diagnosed prevalent patient population in US/EU5/JP) ²GlobalData (2023 diagnosed prevalent patient population for AD, Asthma, and COPD only in US/EU5/JP)

Executive Summary: STAT6 Program

Vision: Develop an oral STAT6 degrader with dupilumab-like profile to provide a more convenient and broadly accessible treatment option for millions of patients suffering from Type 2 diseases (AD, asthma, CRSwNP, COPD, EOE, PN, etc.)

- STAT6 has human genetics and clinical pathway validation
- KT-621 is the first highly selective, potent and orally active STAT6 degrader in clinical development
- In preclinical testing, KT-621 fully degrades STAT6 across multiple species and in all tissues tested and is safe and well tolerated
- KT-621 was more potent than Dupilumab in blocking IL-4 and IL-13 driven Th2 inflammation in preclinical cellular and in vivo models
- The KT-621 Phase 1 trial is ongoing, with a goal of demonstrating robust STAT6 degradation in blood and skin with good tolerability. Results are expected in 2Q25
- Patient testing is planned for 2025, beginning with a Phase 1b trial in AD patients in 2Q25, followed by two parallel Phase 2 studies in AD and Asthma starting in 4Q25 and 1Q26, respectively

KT-621: A Picomolar Degrader of STAT6

Human Primary Cell Type

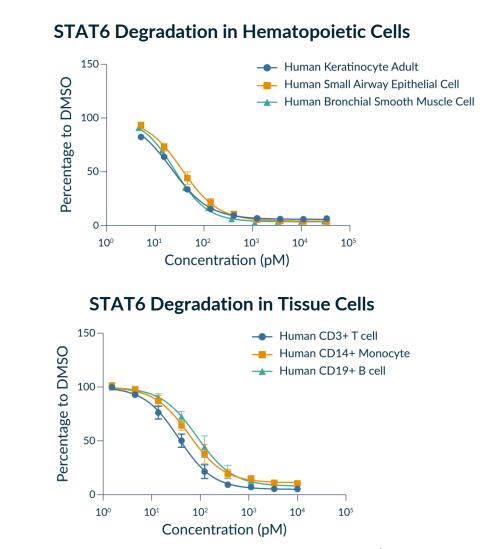
Consistent Degradation Across All Disease Relevant Cell Types Evaluated

KT-621, DC₅₀ (pM)

Skin

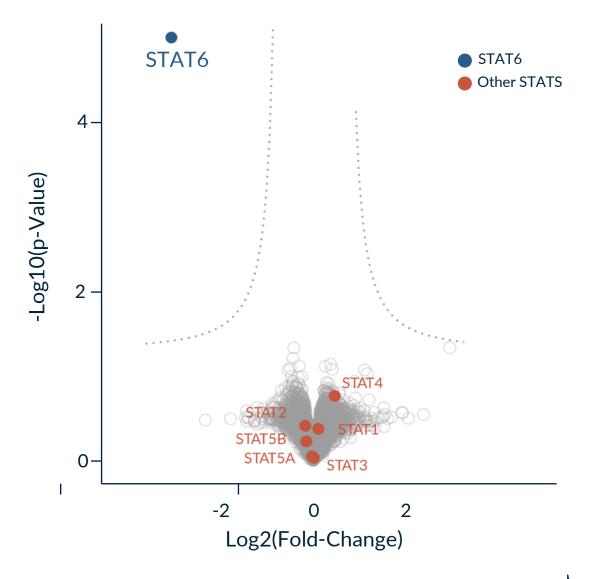
Lungs

Throat/ Airway


Blood Vessels

Neurons

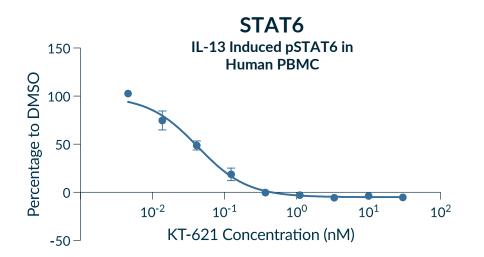
000

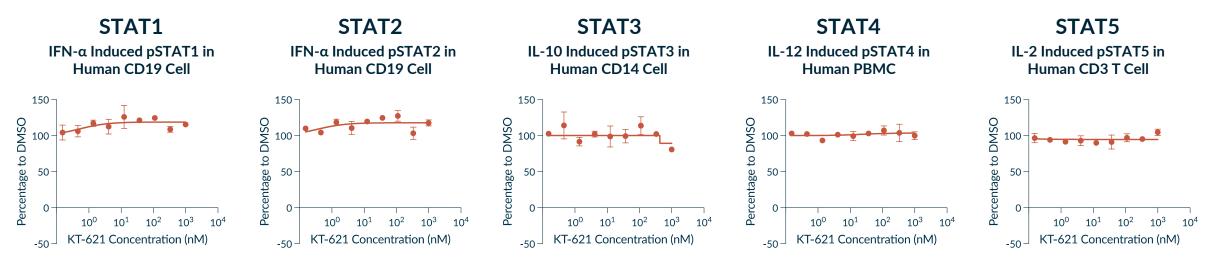

000 000

Hematopoietic cell (all Th2 diseases)	
Human PBMC	13
Human CD3 T cell	36
Human CD14 monocyte	60
Human CD19 B cell	86
Human eosinophil	99
Epithelial cell (AD, CSU, asthma, COPD)	
Human keratinocyte (adult)	22
Human keratinocyte (neonatal)	18
Human bronchial tracheal epithelial cell	33
Human small airway epithelial cell	35
Smooth muscle cell (asthma, COPD, EoE)	
Human bronchial smooth muscle cell	25
Human esophageal smooth muscle cell	33
Endothelial cell (all Th2 diseases)	
Human vascular endothelial cell	46
Neuron (AD, PN, CSU)	
Human iPSC derived sensory neuron	22

KT-621: Exquisite Degradation Selectivity for STAT6

- Complete STAT6 degradation selectivity in human PBMC proteome at 100 x DC₉₀
- No other STATs are degraded to any extent



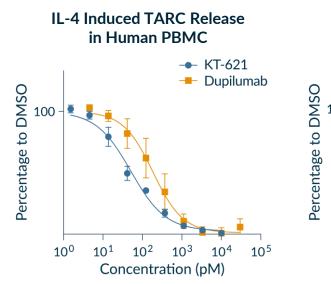

©2025 Kymera Therapeutics KYMERA 18

KT-621: Exquisite Pathway Selectivity for STAT6

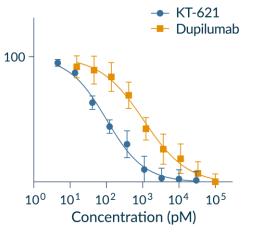
No Impact on Any Other STAT Pathway Observed

STAT assays	KT-621, IC ₅₀ (nM)
IFN-α induced pSTAT1	> 1000
IFN-α induced pSTAT2	> 1000
IL-10 induced pSTAT3	> 1000
IL-12 induced pSTAT4	> 1000
IL-2 induced pSTAT5	> 1000
IL-13 induced pSTAT6	0.042

KT-621 Fully Blocks IL-4/13 Pathway in Human Th2 Functional Assays with IC_{50} 's Lower than Dupilumab


		Cellular Functional Assay	KT-621 IC ₅₀ (pM)	Dupilumab IC ₅₀ (pM)
TADC	Serum Th2 biomarker, chemoattractant for Th2 cell	IL-4 TARC release in human PBMC	62	194
TARC		IL-13 TARC release in human PBMC	43	113
CD23	B cell activation marker, correlates with IgE class switch	IL-4 CD23 expression in human CD19 B cell	125	354
CD23		IL-13 CD23 expression in human CD19 B cell	98	1070
PERIOSTIN	Serum Th2 biomarker and ECM protein associated with	IL-13 Periostin release in human bronchial smooth muscle cell	24	637
PERIOSTIN	tissue remodeling in atopic diseases	IL-13 Periostin release in human esophageal smooth muscle cell	39	431
TAC1	Neuropeptides related to itch transmission in sensory	IL-13 TAC1 expression in iPSC derived human sensory neuron	89	1027
NPPB	neurons	IL-13 NPPB expression in iPSC derived human sensory neuron	121	5714

Percentage to DMSO


100

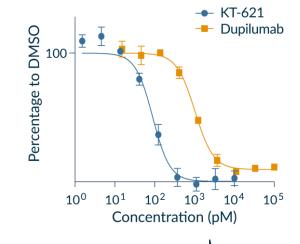
100

10¹

--- KT-621

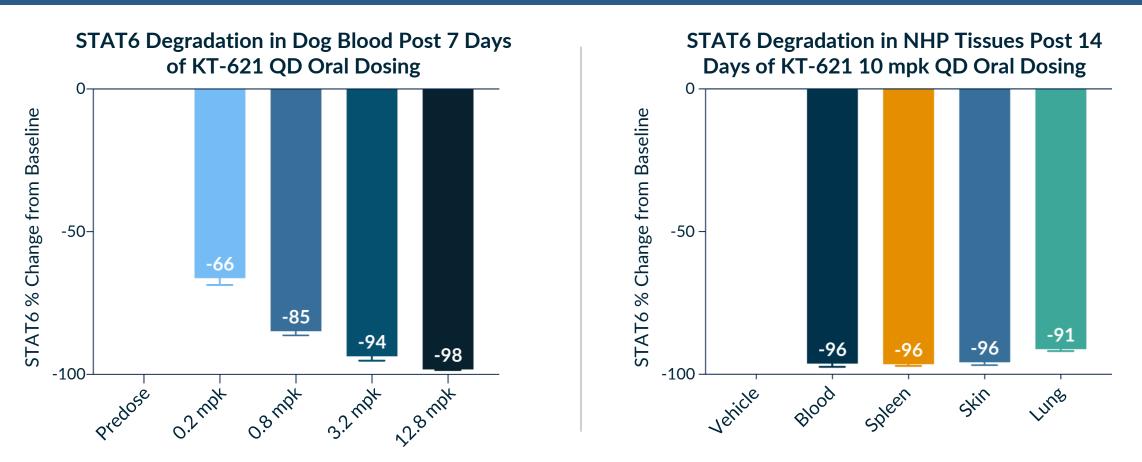
10³

10²


Concentration (pM)

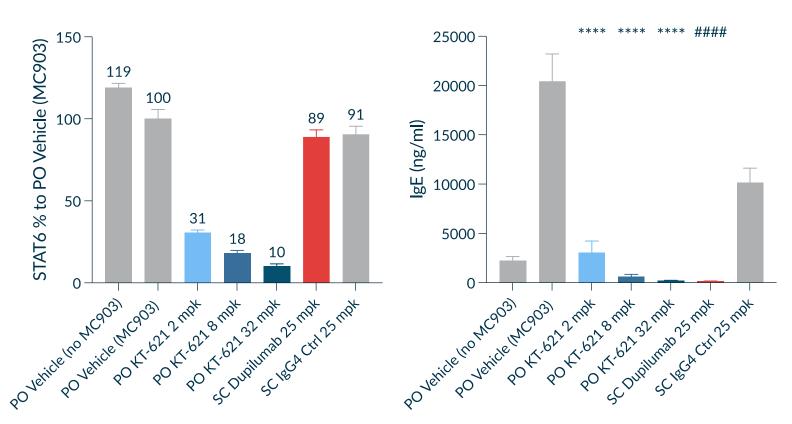
- Dupilumab

104


10⁵

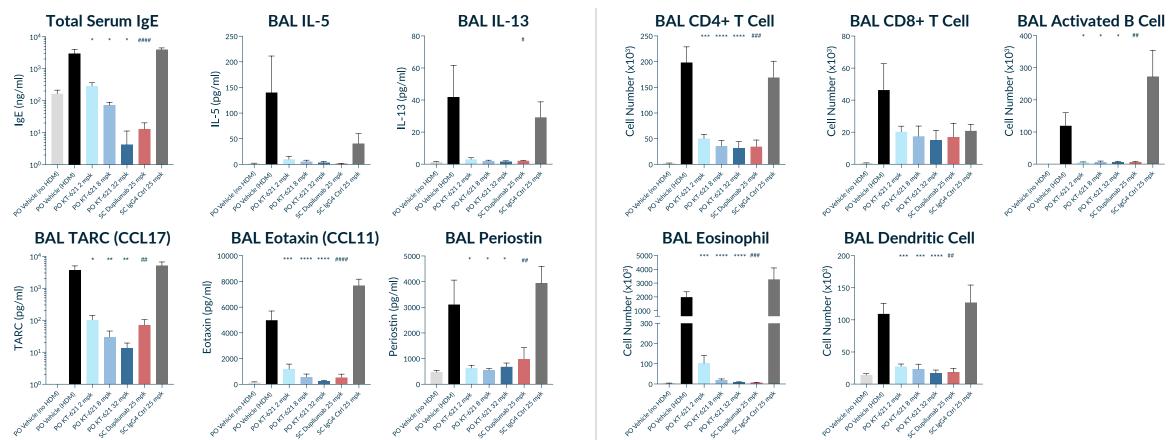
KT-621 Compelling Preclinical PK/PD and Safety Holds Promise for Positive Human Translation

KT-621 Potently Degrades STAT6 to Depletion with Low Oral Doses Across Multiple Preclinical Species and in Multiple Tissues


No adverse safety findings in any doses of GLP tox studies

KT-621 Has Comparable *In Vivo* Activity to IL-4Rα Saturating Dose of Dupilumab in the MC903 Atopic Dermatitis Model

An atopic dermatitis model induced by topical application of low-calcemic vitamin D3 analog MC903 with prominent Th2 inflammation in the IL4/IL4RA humanized mice:


- KT-621 dosed QD orally for 11 days
- Dupilumab dosed 4 times subcutaneously, 25 mpk twice a week (IL-4Rα saturating dose);
 effect equivalent to 300 mg every other week in human

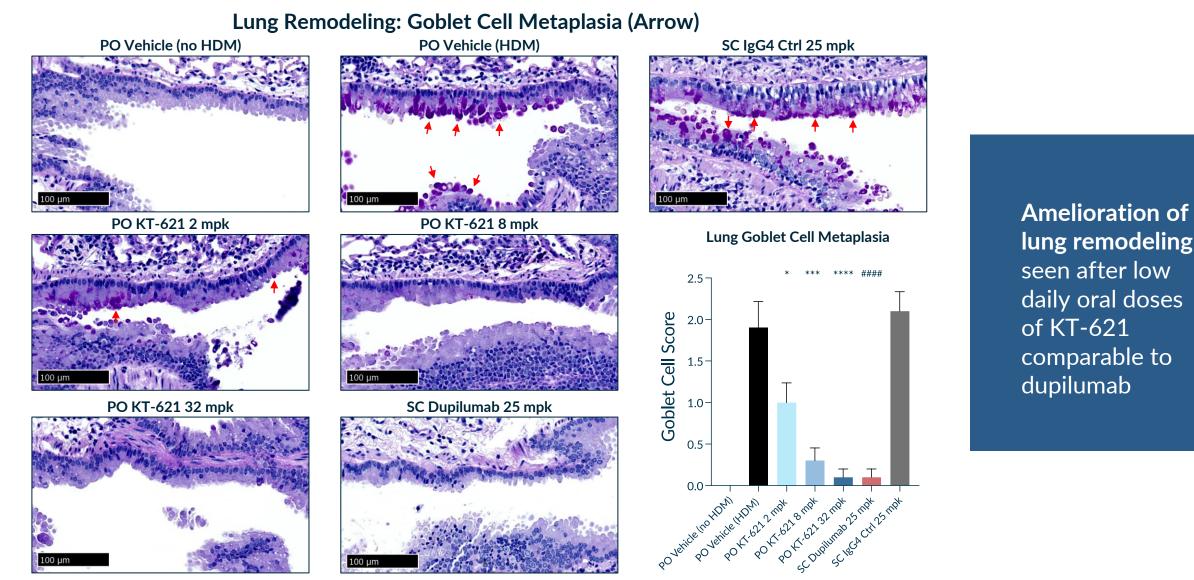
STAT6 Degradation in Mouse Spleen

Total Serum IgE

KT-621 Blocks Th2 Inflammation In Vivo Equally or Better than an IL-4R α Saturating Dose of Dupilumab in the Intranasal HDM Asthma Model

Serum IgE and Lung Cytokine

Inflammatory Infiltrate

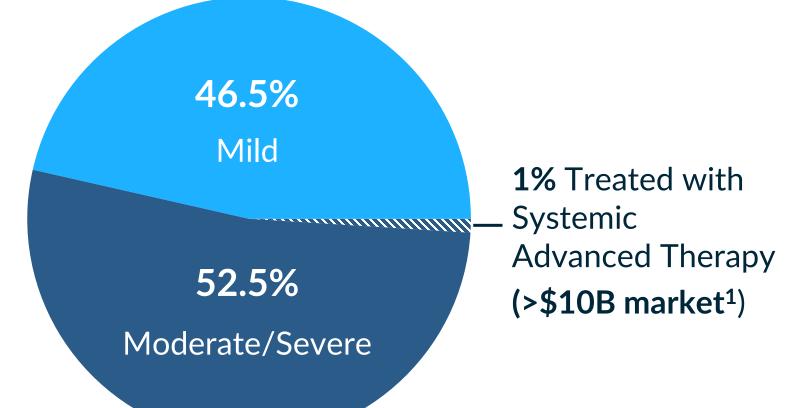

- KT-621 dosed QD orally for 31 days. 2/8/32 mpk doses showed 72/85/91% STAT6 degradation respectively in mouse spleen
- Dupilumab dosed 9 times subcutaneously, 25 mpk BIW (IL-4Rα saturating dose), effect equivalent to 300 mg every other week in human

A lung inflammation model induced by intranasal house dust mite administration with dominant Th2 inflammation in the IL4/IL4RA humanized mice (Le Floc'h et al. Allergy. 2020); BAL – bronchoalveolar lavage; *Significance to PO vehicle (HDM); # Significance to SC IgG4 Ctrl 25 mpk.

©2025 Kymera Therapeutics

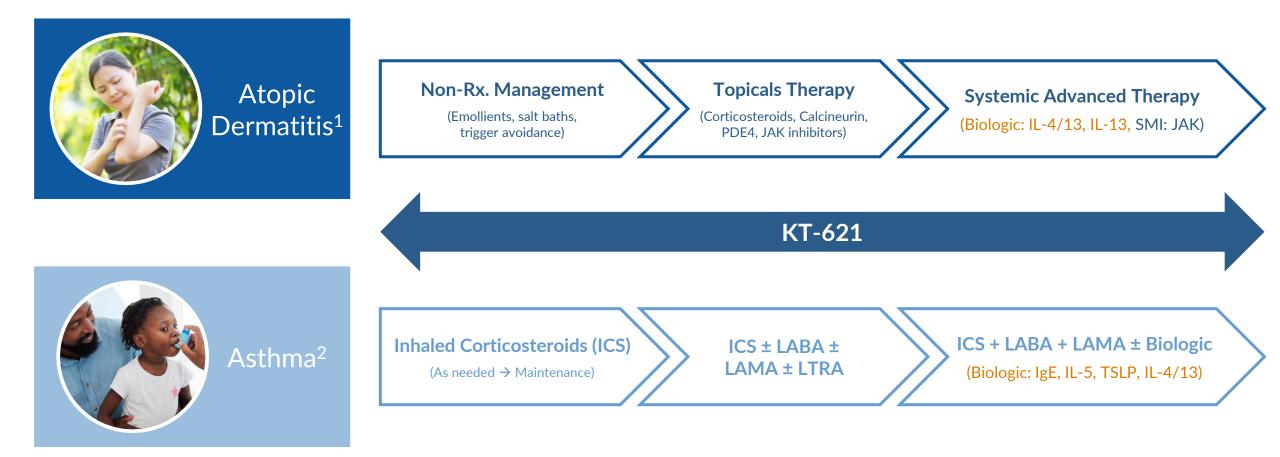
KYMERA 23

KT-621 Reduced Disease Severity in the Lung in the Intranasal HDM Asthma Model


A lung inflammation model induced by intranasal house dust mite administration with dominant Th2 inflammation in the IL4/IL4RA humanized mice (Le Floc'h et al. Allergy. 2020); *Significance to PO vehicle (HDM); # Significance to SC IgG4 Ctrl 25 mpk.

Kymera's Goal is to Build a STAT6 Franchise That Will Serve <u>ALL</u> Patients with Th2 Inflammation

>130 million diagnosed mild and moderate/severe patients across the seven major markets¹



Kymera is the leader in the STAT6 target space (with multiple molecules as needed) poised to deliver transformative treatments for ALL patients with Th2 diseases: AD, Asthma, COPD, CRSwNP, CSU, EoE, BP, PN, others

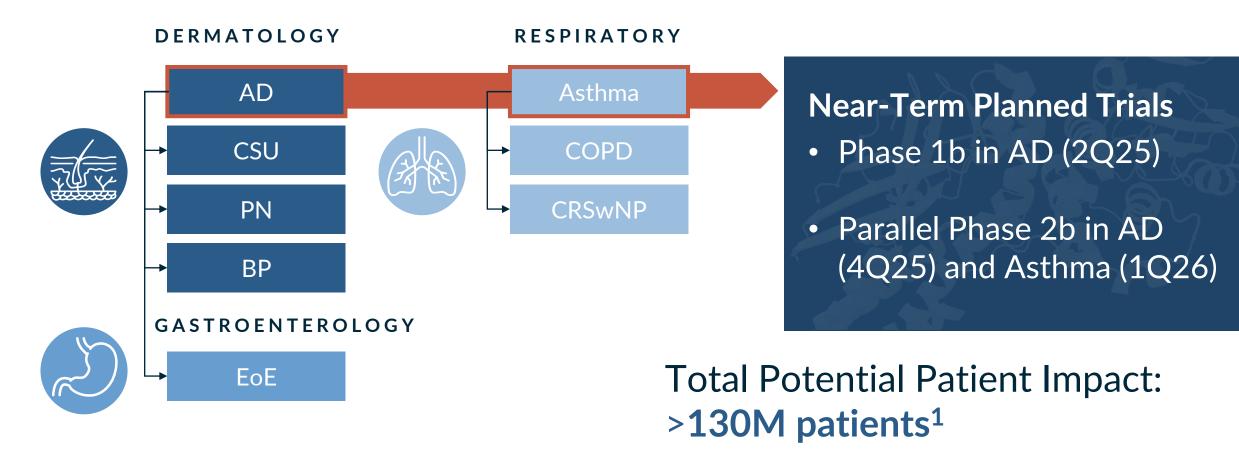
Opportunity to Transform Treatment Paradigm in Th2 Inflammation

Examples: Atopic Dermatitis and Asthma

©2025 Kymera Therapeutics

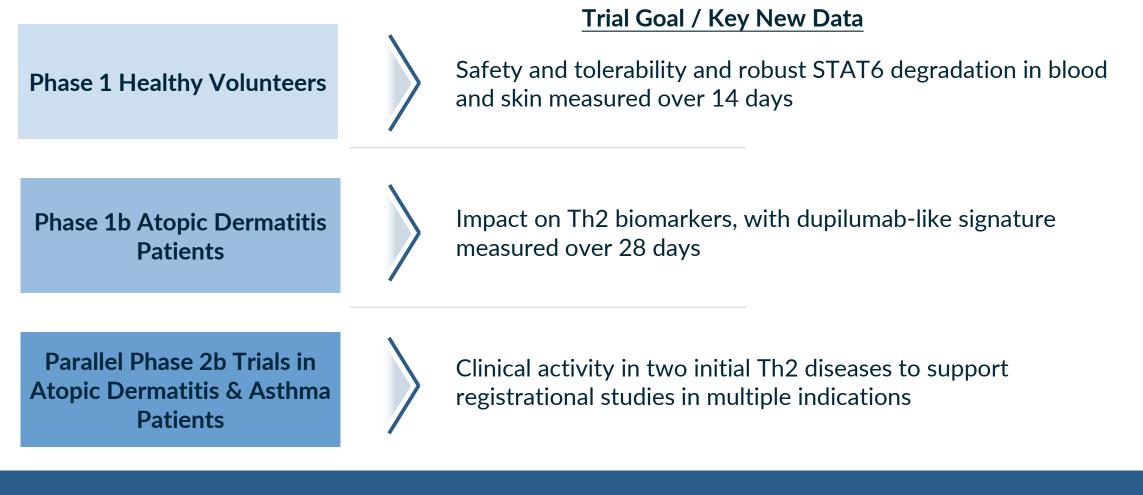
KYMERA 26

KT-621: First STAT6 Agent to Enter Clinical Evaluation


Phase 1 Trial: Double-blind, Placebo-controlled SAD and MAD in Healthy Volunteers

Part A	Primary	 Safety & tolerability of escalating single and 	2Q 2025	
Single Ascending Dose (SAD)		multiple doses of KT-621	Phase 1 Healthy Volunteer Data	
	Secondary	 Pharmacokinetic measures 	Key trial aim is to show	
Part B Multiple Ascending Dose (MAD) 14x daily doses	Exploratory	 STAT6 protein levels in blood and skin (MAD) Th2 biomarkers 	that KT-621 can robustly degrade STAT6 in blood and skin at doses that are safe and well-tolerated	

Phase 1 trial status update: Recruitment ongoing with multiple SAD/MAD cohorts completed


KT-621 on Track for Full Development Across at Least Eight Dupilumab Established Indications

Initial Parallel Development in Moderate/Severe Atopic Dermatitis (AD) and Asthma is Expected to Enable Accelerated Late Parallel Development Across All Other Dermatology/GI and Respiratory indications

©2025 Kymera Therapeutics KYMERA 28

KT-621 Development Path to Key Proof-of-Concept Inflection Points

Once daily, oral pill: KT-621 is the <u>first</u> STAT6 directed medicine in clinical development with the potential to shift the treatment paradigm for multiple Th2 diseases

Oral STAT6 Degrader: KT-621

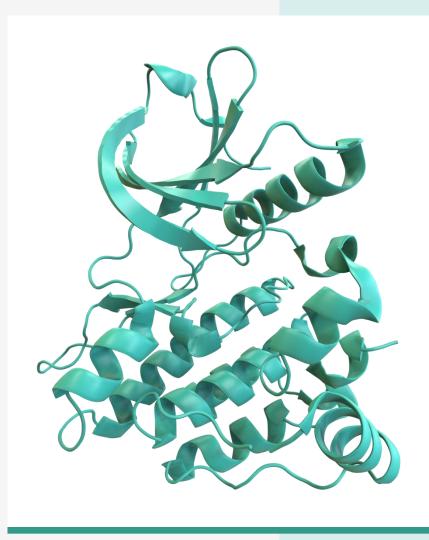
Dupilumab-like Activity in a Pill

Validated Biology

- Historically undrugged, essential transcription factor in IL-4 and IL-13 signaling pathways
- Central driver of Th2 inflammation
- STAT6 validated by human genetics
- Pathway validated by human genetics and FDA-approved dupilumab across multiple indications

Opportunity

- Total potential patient impact >130M patients¹
- Potential to access beyond biologics-eligible patients and address patients across all disease severities
- WW IL-4/IL-13 biologic market currently \$10B+ annually²
- Estimated to grow to \$23B+ with expanded indications and new entrants²
- Mega-blockbuster potential for oral degraders in allergic diseases


KT-621 Profile

- Full IL-4 and IL-13 functional inhibition with picomolar IC50's superior to dupilumab
- Robust activity shown in *in vivo* preclinical models of AD and lung inflammation equal or superior to dupilumab
- STAT6 degradation was well-tolerated in multiple preclinical safety studies (including GLP-tox) at >40x efficacious concentration
- Phase 1 Healthy Volunteer Clinical Study ongoing

Upcoming Milestones Phase 1 HV Data: 2Q 2025 Phase 1b AD Data: 4Q 2025 Phase 2b Starts: 4Q 2025 (AD)/1Q 2026 (Asthma)

©2025 Kymera Therapeutics

First-in-Class Oral TYK2 Degrader Program TYK2-LOF profile to deliver biologics (i.e., anti-IL-23)-like activity in a pill

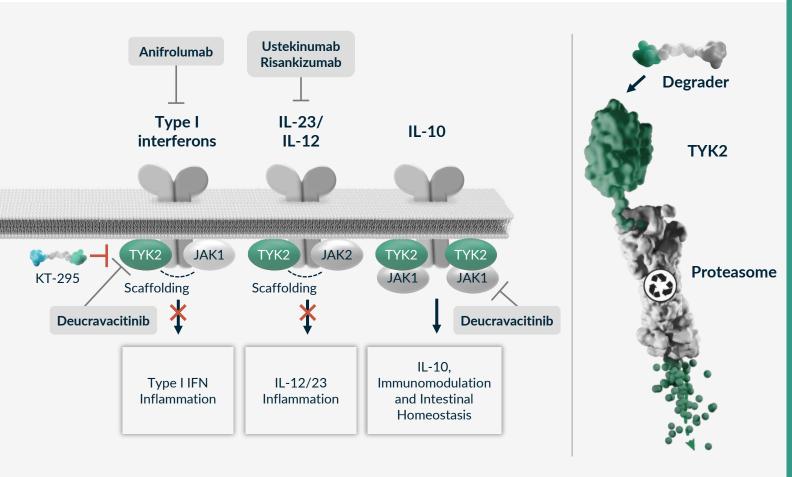
TYK2 Biology and Target Rationale

Target Biology and Rationale

- TYK2 is a member of the JAK family required for Type I IFN, IL-12 and IL-23 cytokine signaling
- TYK2 regulated cytokines are clinically validated targets for autoimmune and inflammatory diseases

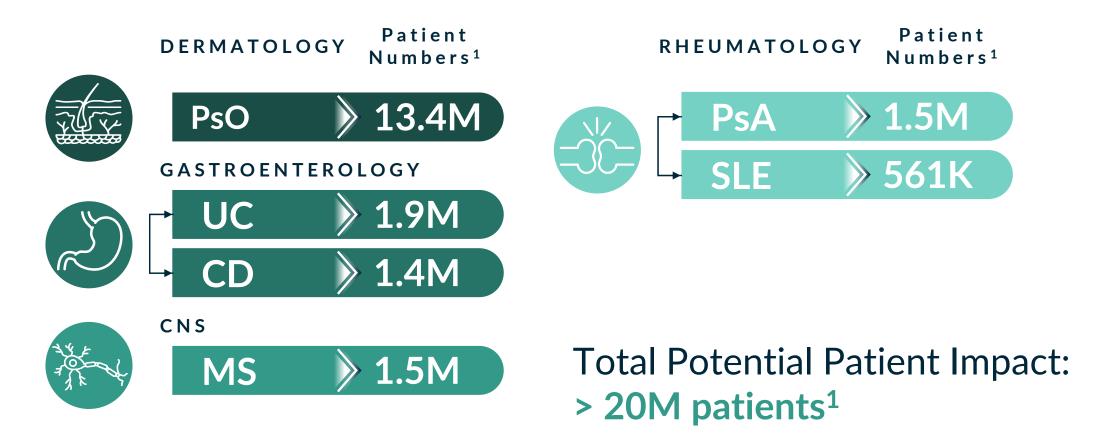
Human Genetics

• Loss-of-function variant of TYK2 is protective in autoimmune and inflammatory diseases


Clinical Pathway Validation

- IL-23 (± IL-12)-targeting agents include ustekinumab, risankizumab, guselkumab, and tildrakizumab, with approvals in PsO, PsA, CD, UC
- Type I IFN-targeting agents include anifrolumab with approval in SLE
- TYK2 SMI deucravacitinib recently approved in PsO

TYK2 SCAFFOLDING KINASE Ustekinumab Anifrolumab Risankizumab Type I interferons: IL-12 IL-23 IFNα and IFNβ TYK2 TYK2 TYK2 JAK1 JAK2 JAK2 KT-295 Scaffolding Scaffolding Scaffolding Deucravacitinib Type I IFN IL-12/23 Inflammation Inflammation


TYK2 Degrader Advantage

Only TYK2 Degraders Can Achieve Biologics-like Activity

- TYK2 has a well-established scaffolding function that is responsible for cytokine receptor surface expression and activation
- Unlike SMIs, only TYK2 degradation recapitulates the human LOF phenotype of full pathway inhibition of Type I IFN, IL-12 and IL-23 and sparing of IL-10
 - Unlike deucravacitinib, which inhibits IL-10 through JAK1, TYK2 degradation does not inhibit IL-10, which is important in IBD
 - Compared to Zasocitinib (TAK-279), TYK2 degradation fully inhibits Type I IFN
- Full TYK2 degradation leads to pathway inhibition superior to existing SMIs with potential for biologics-like activity

Patient Impact of TYK2: Potential Best-In-Class Opportunity in I&I

Numerous indication opportunities across multiple therapeutic areas de-risked by biologics and deucravacitinib TYK2 degradation, differentiated from inhibition, leads to full pathway inhibition with potential to deliver biologic-like activity^{*} Oral degrader medicines offer opportunity to reach broader patient populations

©2025 Kymera Therapeutics

KYMERA 34

¹GlobalData (2023 diagnosed prevalent patient population for US/EU5/JP);

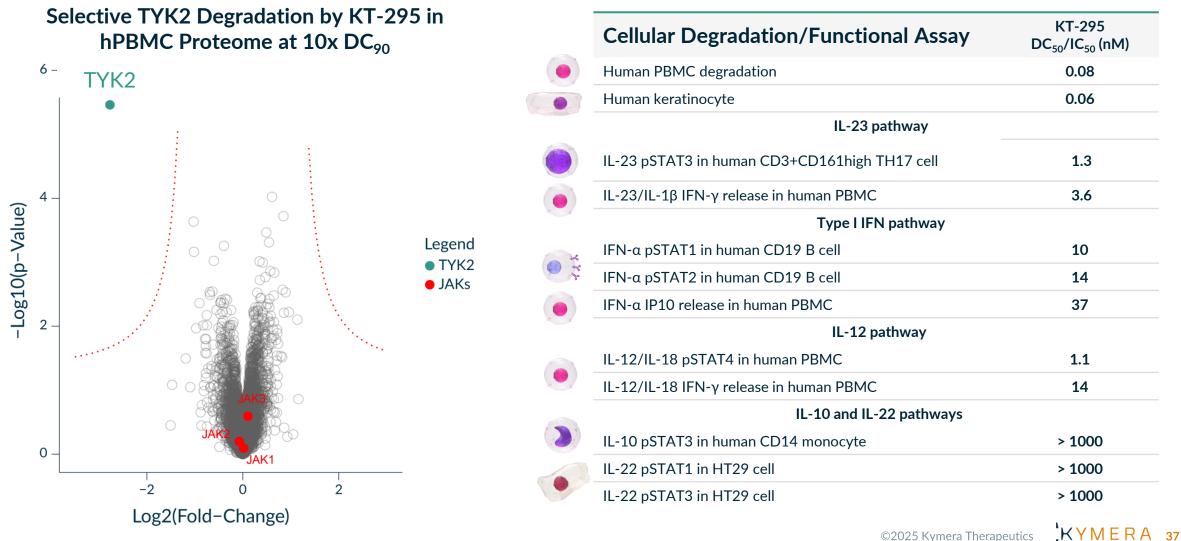
²Statements regarding TYK2 degrader biology throughout this presentation are based upon preclinical experiments in human cells and preclinical species conducted by Kymera

Executive Summary: TYK2 Program

Vision: Develop an oral TYK2 degrader with biologics-like profile as a preferred option for patients suffering from Th17 (Psoriasis, Psoriatic Arthritis, IBD) and interferon related disorders (SLE)

- TYK2 has human genetics and clinical validation
- KT-295 is the first highly selective, potent and orally active TYK2 degrader about to enter clinical development
- KT-295, unlike small molecule inhibitors approved or in the clinic, is able to replicate the TYK2 genetic LOF profile of full blockade of IL-23, IL-12 and Type-1 Interferon while sparing IL-10
- In preclinical testing, KT-295, fully degrades TYK2 across multiple species and in all tissues tested and is safe and well tolerated
- The KT-295 IND/Phase 1 trial is expected to start in 2Q 2025 with data in 4Q 2025

TYK2 Has Well-Established Scaffolding Function

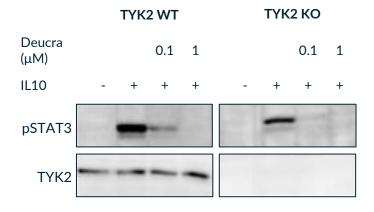

- TYK2 complete deficiency severely impairs IL-23, Type I IFN, and IL-12 signaling but spares IL-10 in humans
- TYK2 scaffolding functions are demonstrated by differential pathway inhibitions in complete TYK2 deficiency vs a kinase dead variant in humans
- TYK2 deficient humans are generally healthy with only increased risk of some mycobacteria and viral infections that are relatively mild, curable and tend not to recur, de-risking safety for TYK2 degradation

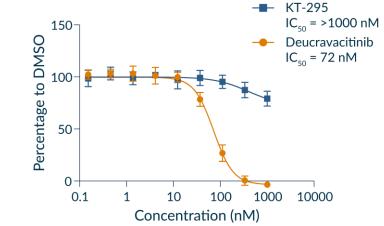
	Cytokine Pathway	IL-23	Type I IFN	IL-12	IL-10
TYK2 Degrader (LOF Phenotype) Opportunity	WT TYK2	++++	++++	++++	++++
	Complete deficiency TYK2 -/-	+	+	+	+++
	TYK2 Kinase dead P1104A/P1104A	+	++++	++++	++++

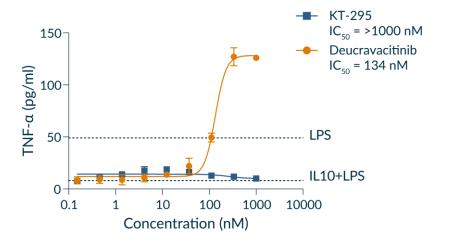
Degrading TYK2 is the only small molecule approach to potentially eliminate all scaffolding and catalytic functions of TYK2, fully recapitulating the human TYK2-/- biology

KT-295, a Highly Selective Picomolar TYK2 Degrader, Recapitulates **TYK2** Human Deficiency Biology

Fully Inhibits Type I IFN and IL-12/23 and Spares IL-10/22

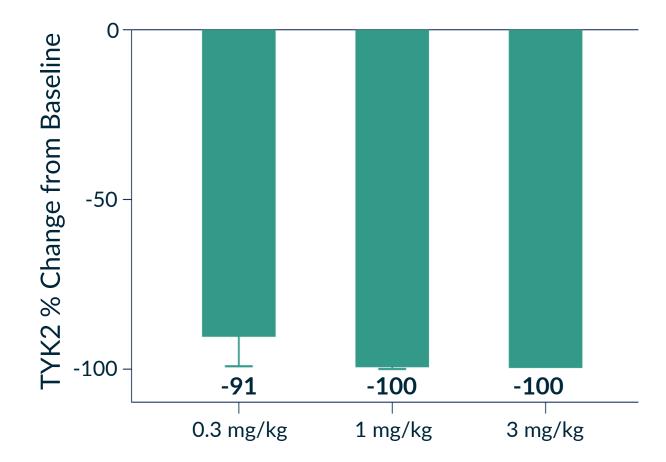

©2025 Kymera Therapeutics


Unlike Allosteric TYK2 Inhibitor Deucravacitinib, KT-295 Does Not Inhibit IL-10

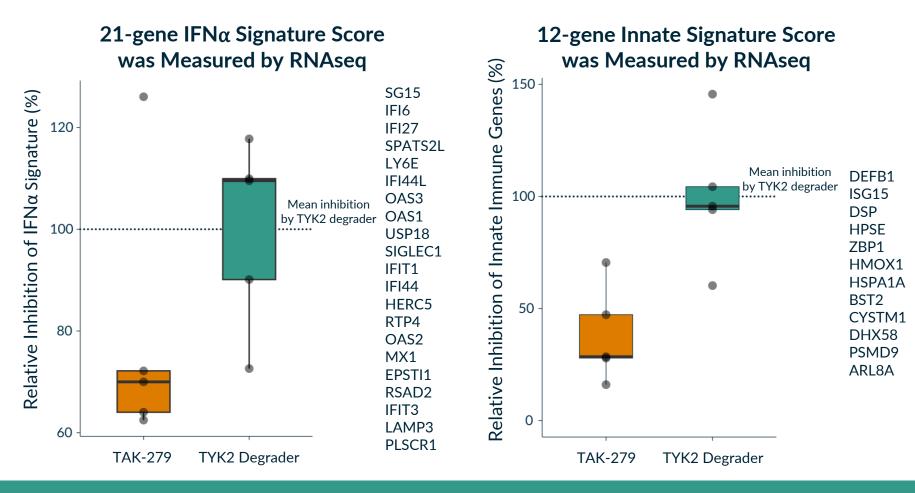

- IL-10 has essential roles in intestinal homeostasis
 - Loss of function mutations of the IL-10 pathway cause early onset refractory colitis in humans
- Deucravacitinib inhibits IL-10 because of its anti-JAK1 activity; KT-295 spares IL-10 as a result of TYK2 selectivity

Deucravacitinib Inhibited IL-10induced pSTAT3 in TYK2 KO EBV B Cell

Deucravacitinib Inhibited IL-10induced pSTAT3 in Human CD14 Monocyte Deucravacitinib Inhibits IL-10's Function of Suppressing LPS-induced TNF-α Release in Human CD14 Monocyte


©2025 Kymera Therapeutics

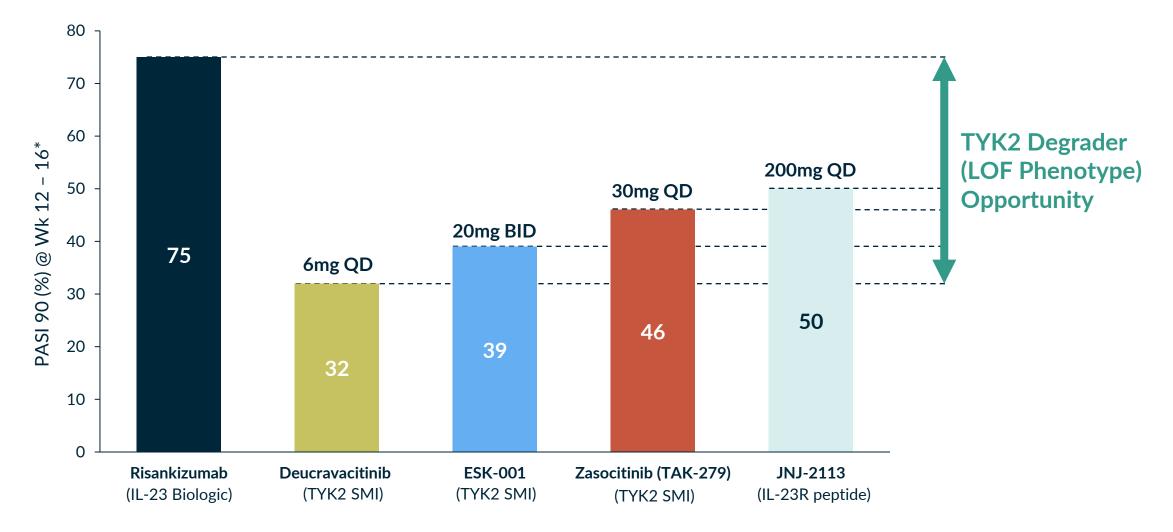
KYMERA 38


KT-295 Achieved Dose Dependent Deep Degradation of TYK2 In Vivo with Low Oral Doses

TYK2 Degradation in NHP Blood Post 7-day QD Oral Dosing for KT-295

- KT-295 potently degrades TYK2 across multiple preclinical species
- In NHP, KT-295 can degrade TYK2 to depletion with low oral doses

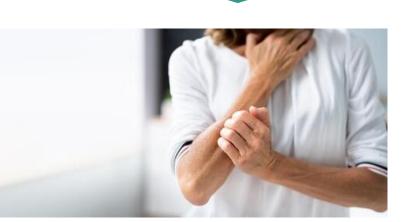
Superior Inhibition of Type I IFN Pathway and Innate Immunity by Degrader vs. Inhibitor


Doses Used:

- TYK2 Inhibitor Zasocitinib (TAK-279) = 422nM (IFNα stimulated pSTAT2 IC₉₅). Clinical exposure Cmax (free) at 35mg¹ = ~ 77 nM
- TYK2 Degrader = 56nM (IFNα stimulated pSTAT2 IC₉₅)

At concentrations where SMI and degrader block pathway 95%, degrader demonstrates superior biological effect. Zasocitinib (TAK-279) does not reach these exposures in clinic

Traditional SMI's Do Not Reach Maximal Target Engagement and Have Limited Clinical Activity vs. Biologics


Clinical Efficacy in Psoriasis is Target Engagement Dependent

KT-295 Has the Potential to Bring Biologics-Like Efficacy in an Oral Daily Pill to All Addressable Patients

>20 million diagnosed mild and moderate/severe patients across the 7 major markets (2023)

11% Treated with
 Systemic
 Advanced Therapy
 (>\$65B market)¹

Potential to address patients across all disease severities

©2025 Kymera Therapeutics KYMERA 42

Oral TYK2 Degrader: KT-295

TYK2-LOF Profile to Deliver Biologics (i.e., IL-23)-like Activity in a Pill

Validated Biology

- TYK2 is a member of the JAK family required for Type I IFN, IL-12 and IL-23 cytokine signaling
- TYK2 has a well-established scaffolding function that plays a key role in cytokine receptor surface expression and activation
- TYK2 validated by human genetics
- Pathway validated by upstream biologics (i.e., ustekinumab) and TYK2 SMIs across many diseases

Opportunity


- Total potential patient impact¹: >20M patients
- IL-23 and Type 1 IFN-based biologic market currently ~\$18B annually²
- Estimated to grow to ~\$27B with expanded indications and new entrants²
- TYK2 SMIs have limitations due to selectivity (deucravacitinib) or lack of potent IFN-α activity (Zasocitinib/TAK-279) and limited clinical target engagement (both)
- Mega-blockbuster potential for oral degrader with biologics-like activity that is superior to TYK2 SMI with potential for TYK2 franchise to address patients across all disease severities

KT-295 Profile

- Degrades TYK2 in human cells with pM potency
- Recapitulates the phenotype of TYK2 human deficiency showing potent IFN-α, IL-12 and IL-23 inhibition and sparing IL-10
- Dosed orally, shows complete TYK2 degradation in NHP providing a path to full target engagement in clinic, unlike current SMIs
- IND enabling studies ongoing

Upcoming Milestones Phase 1 HV Start: 2Q 2025 Phase 1 HV Data: 4Q 2025

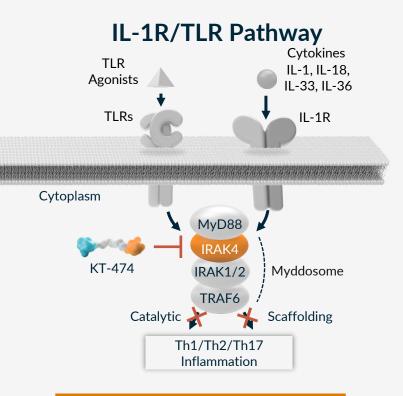
First-in-Class Oral IRAK4 Degrader Program

Combined activity of upstream biologics (anti-IL-1/18/33/36) in a pill

IRAK4 Biology and Target Rationale

Target Rationale

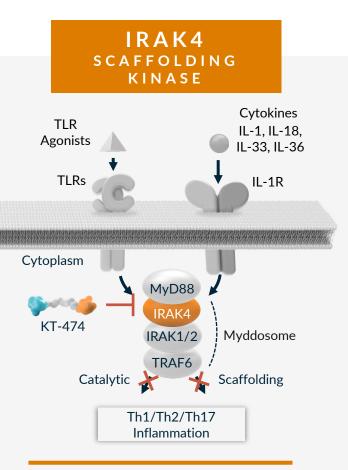
• IRAK4 is an obligate node in IL-1R/TLR signaling, and its degradation is the only approach to fully block the pathway


Human Genetics

Adult humans with IRAK4 null mutation are healthy

Clinical Pathway Validation

- IRAK4 degradation has the potential to achieve a broad, welltolerated anti-inflammatory effect
- Multiple development opportunities in immune-inflammatory diseases which signal through MyD88/IRAK4 have been validated¹:
 - IL-1 α /IL-1 β : RA, CAPS, HS, AD, Gout
 - IL-18: AD, Macrophage Activation Syndrome
 - IL-36: Generalized Pustular Psoriasis, AD
 - IL-33: Asthma, COPD
 - IRAK4 SMI: RA



IRAK4 is master regulator of **innate immunity** with scaffolding and kinase functions

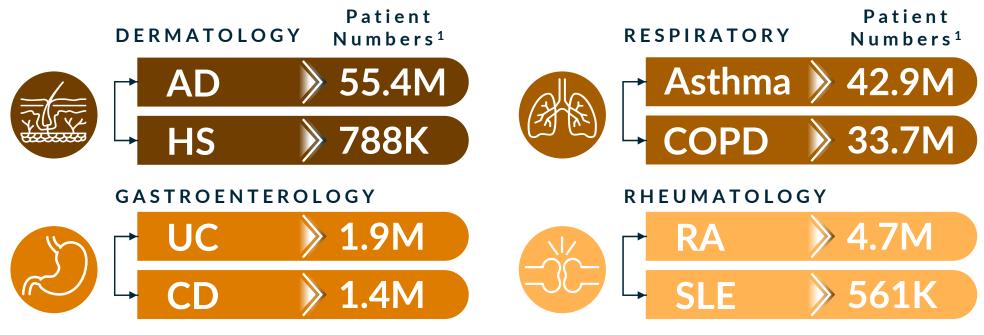


IRAK4 Degrader Advantage

IRAK4 caps the oligomer size of MYD88 to trigger myddosome formation Only Degrader Can Fully Block Inflammation

 $\mathsf{LPS} + \mathsf{IL}\text{-}1\beta \xrightarrow{} \mathsf{IL}\text{-}6$

Clinical Data (Nature Medicine*)


- IRAK4 degradation <u>reduces signs and symptoms of HS and AD</u>, while IRAK4 SMI inactive in Phase 2 HS trial
- IRAK4 blocks inflammation in blood and skin of HS and AD patients

Preclinical Data (Kymera IRAK4 Backgrounder)

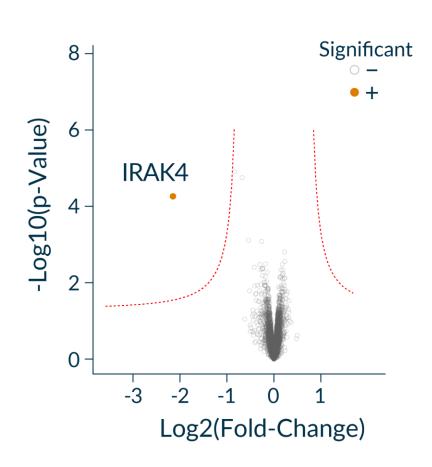
- IRAK4 KO is able to block TLR activation unlike the kinase dead rescue
- IRAK4 scaffolding function is critical in Myddosome formation and pathway signaling
- IRAK4 degradation, but not kinase inhibition, can block TLR induced NF-κB translocation and IL1R+TLR activation
- IRAK4 degradation is superior to kinase inhibition at blocking downstream phosphoproteome
- IRAK4 degradation is superior to inhibition in a variety of preclinical efficacy models

©2025 Kymera Therapeutics KYMERA 46

IL-1R/TLR Pathway Potential Impact Across Multiple Immune-Inflammatory Diseases

Total Potential Patient Impact: >140M patients¹

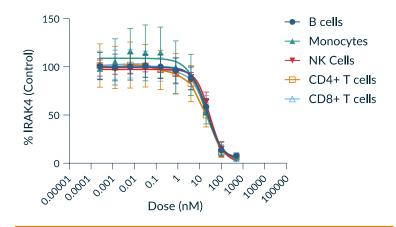
Numerous indication opportunities across multiple therapeutic areas validated by sub-optimal pathway inhibitors IRAK4 degradation leading to full pathway inhibition has the potential to deliver superior profile to upstream biologics Oral degrader medicines offer opportunity to reach broader patient populations


Executive Summary: IRAK4 Program

Vision: Develop an oral IRAK4 degrader with superior activity to upstream pathway biologics to address debilitating diseases driven primarily by innate immunity (TLR, IL-33, IL-36 and IL-1) for AD, HS and other diseases such as COPD, Asthma, IBD, Lupus, RA, others

- IRAK4 has both genetic and clinical validation, although it has been insufficiently drugged with small molecule inhibitors
- Fully blocking the IRAK4 pathway has the unique potential to combine the activity of multiple upstream biologics (anti-IL-1/18/33/36) in an oral pill
- KT-474 is the first, highly selective, potent and orally active IRAK4 degrader in clinical development
- In preclinical testing, KT-474 fully degraded IRAK4 across multiple species and was safe and well tolerated and was biologically differentiated and more potent than IRAK4 SMI's in blocking IL-1R/TLR driven inflammation
- In Phase 1 (healthy volunteers and AD/HS patients), KT-474 demonstrated robust degradation in blood and skin, impacting disease relevant biomarkers and disease measures (EASI and pruritus in AD and HiSCR and pain in HS)
- KT-474 is in Phase 2b trials in AD and HS, led by partner Sanofi, with data in 2026

KT-474: Selective and Potent IRAK4 Degrader Active in Multiple Cell Types


Selectivity in PBMC

- KT-474 selectively degrades IRAK4 in human immune cells at concentration 10-fold above the DC₉₀
- Potent degradation in PBMC subsets and skin cells including fibroblasts, with single-digit nM DC₅₀
- Associated with functional inhibition of TLR- and IL-1βstimulated cytokine production
- Comprehensive understanding of degradation kinetics across cell types to enable human translation

Potency in Blood and Skin Cells

KT-474 Degradation Across Immune Cell Types

Cell type (Human)	Source	KT-474 DC ₅₀ (nM)
Monocytes	Blood	2.6
B cells	Blood	2.7
CD4 T cells	Blood	1.5
CD8 T cells	Blood	1.5
NK cells	Blood	1.8
Fibroblasts	Skin	1.5
Keratinocytes	Skin	7.8

KT-474 Phase 1: Compelling Data and Early POC in HS and AD

Healthy Volunteers (HV): SAD and MAD

- Evaluated safety, tolerability and pharmacokinetics in 105 healthy volunteers
 - SAD: Oral doses of 25-1600 mg
 - MAD: Escalating doses up to 200 mg were administered for 14 consecutive days
- Robust (>95%) and sustained IRAK4 degradation with single and multiple daily doses
- Broad inhibition of *ex vivo* TLR-mediated cytokine induction
- Generally well-tolerated across all dose groups

ิล

HS and AD Patient Cohort

- Open label study in 21 patients with HS and AD
- Dose: 75 mg QD with food (equivalent exposure to 100 mg fasted), administered for 28 consecutive days
- Safety, PK and PD comparable to healthy volunteers
- Robust IRAK4 degradation in blood and skin with associated systemic anti-inflammatory effect in HS and AD patients
- Promising clinical activity observed in HS and AD

nature medicine

Article https://doi.org/10.1038/s41591-023-02855: IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial

Received: 21 July 2023			
Accepted: 6 October 2023			
13 November 202			

Check for update

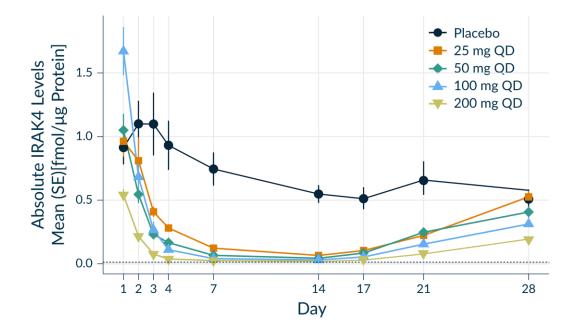
Lindsay Ackerman', Gerard Acloque², Sandro Bacchelli³, Howard Schwartz⁴, Brian J. Feinstein⁵, Phillip La Stella⁶, Afsaneh Alavi', Ashwin Gollerkeri⁹, Jeffrey Davis⁹, Veronica Campbell⁴, Alice McDonald⁸, Sagar Agarwal⁸, Rahul Karnik⁴, Kelvin Shi⁹, Aimee Mishkin⁴, Jennifer Cutbertson⁸, Christine Klaus⁸, Bradley Enerson⁸, Virginia Massa⁸, Eric Kuhn⁸, Kirti Sharma⁸, Erin Keaney⁶, Randy Barnes⁹, Dapeng Chen⁸, Xiaozhang Zheng⁹, Haojing Rong⁹, Vijay Sabesan⁸, Chris Ho⁸, Nello Mainolfi⁸, Anthony Slavin⁸ & Jared A., Gollob 0⁸ ⁽¹⁾

News & views

geted therapy

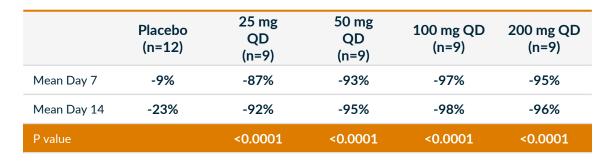
https://doi.org/10.1038/s41591-023-02622-y

PROTACs reach clinical development in inflammatory skin disease


Fleur M. Ferguson

A phase 1 trial of an IRAK4-targeted protein degrader in patients with chronic inflammatory skin diseases hits an important milestone for the safe application of this drug class beyond oncology.

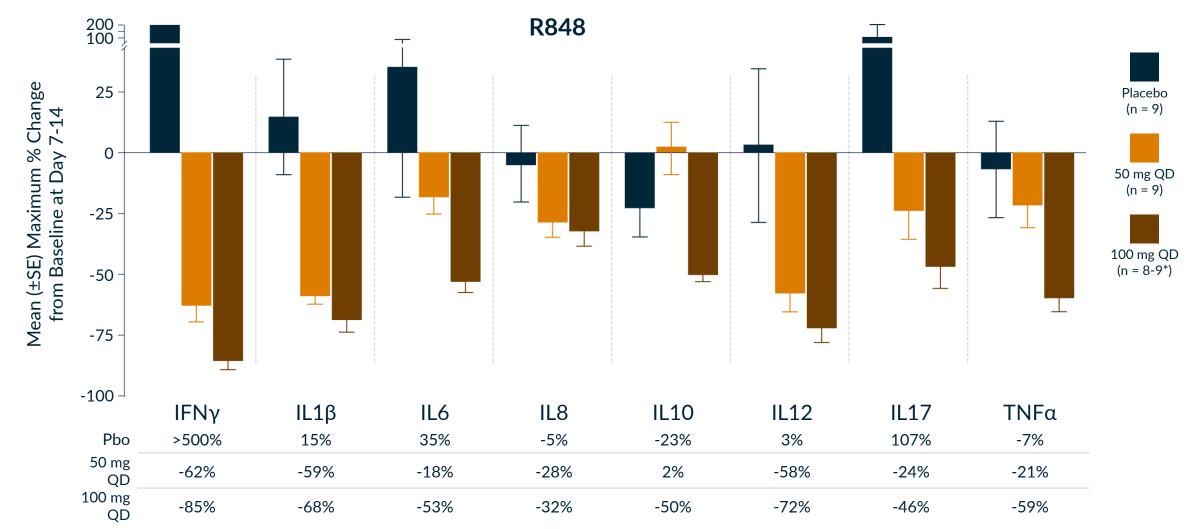
Phase 1 MAD HV: KT-474 Achieved Robust and Sustained IRAK4 Degradation with Multiple Daily Oral Doses (14 Days)



Absolute IRAK4 Levels

20 Placebo 25 mg QD Mean (±SE) Percent IRAK4 0 50 mg QD Change from Baseline 100 mg QD 200 mg QD -20 -40 -60 -80 -100 Dav 7 **Dav 14**

Percent IRAK4 Reduction at Steady State

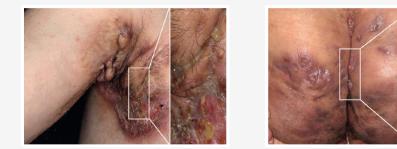

- Detected by mass spectrometry in circulating PBMC
- Steady state IRAK4 reduction achieved between Days 7 and 14
- Recovery towards baseline by Day 28 (2 weeks after last dose)
- MAD 2 through 4 approached Lower Limit of Quantitation (LLOQ)

* p-values relative to placebo

Deep and Broad Inhibition of Th1/Th17 Cytokines Ex Vivo

Results through MAD3 Showed Dose-Dependent Effect Tracking with Extent of Monocyte IRAK4 Degradation

50 mg QD: 93-95% PBMC degradation at Day 7-10; 87-90% Monocyte degradation at Day 7-14. 100 mg QD: 97-98% PBMC degradation at Day 7-10; 92-93% Monocyte degradation at Day 7-14. *n=8 for LPS, n=9 for R848. Mean values > 200% have been replaced by 200 for visualization purposes.


KYMERA 52

Initial Clinical Focus for KT-474: Moderate to Severe HS and AD

Hidradenitis Suppurativa (HS)

Chronic and debilitating skin disease with painful nodules, abscesses and draining fistulae/tunnels

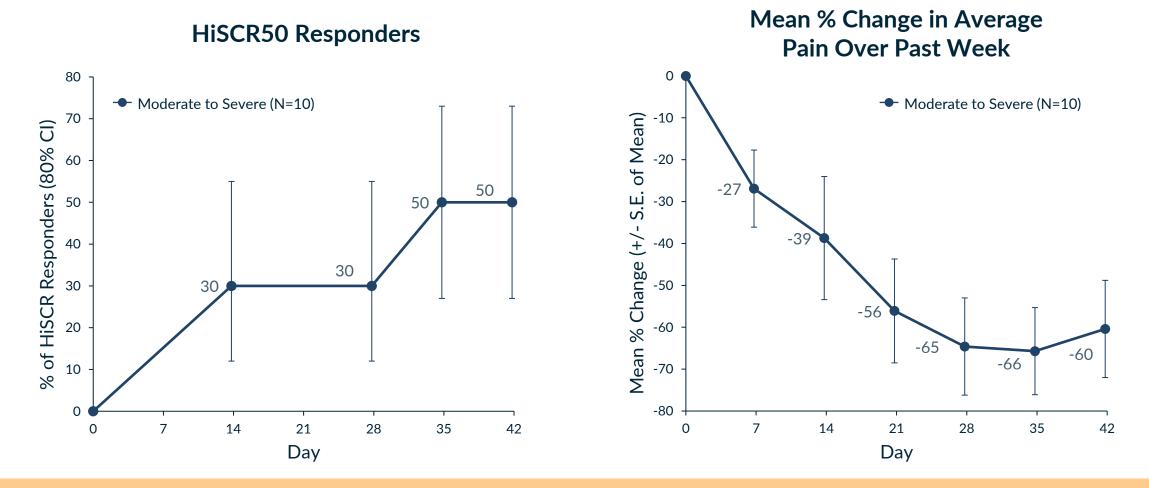
Major QoL impact: Pain, itching, depression, social isolation

- Many diagnosed in their 20s/30s; more common in females (~3:1); prevalence estimated to be up to 1-3% of population in US and EU
- Lesions characterized by pleotropic inflammation with Th1/Th17 skewing; bacterial infection and tissue destruction leading to TLR activation; IL-1 and IL-36 production
- Active agents approved or in development target TNF- $\alpha,$ IL-17 and JAK/STAT pathways

Atopic Dermatitis (AD)

Chronic inflammatory skin disease with scaly, dry, erythematous lesions; intense itching/scratching, predisposition to infections

Major QoL impact: Itching, pain, sleep disturbance



- Onset usually in early childhood; affects an estimated 98 million adults in US/EU5/JP¹
- Lesions characterized by pleotropic inflammation with Th2 skewing; bacterial infection and skin barrier breakdown leading to TLR activation; IL-33 and IL-1 production
- Active agents approved or in development target IL-4/IL-13, JAK/STAT and OX40/OX40-L pathways

KT-474 Opportunity: Potential for broad anti-inflammatory effect, competitive efficacy vs. pathway biologics and convenience of once-daily oral dosing

Robust Clinical Impact in HS After Only 28 Days of Dosing

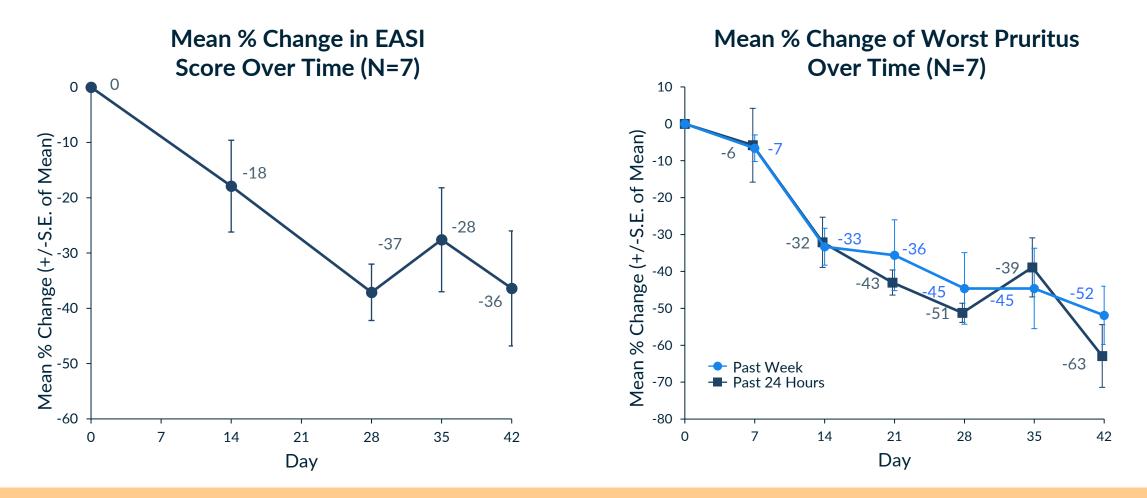
HiSCR50 response rate of up to 50% and pain reduction of up to 66% in moderate to severe HS patients

KT-474 Showed Meaningful Signs of Clinical Activity in HS, Comparing Favorably to Placebo Benchmarks and SOC

Summary Results

- Mean total AN count reduction of 46 to 51%, with maximum reduction up to 100%
- AN count of 0/1/2 response rate of 42 to 50%
- HiSCR50 response rate of 42 to 50%
- HiSCR75 response rate of 25 to 30%

- Pain NRS30 response in 50 to 60% and mean peak pruritis reduction of 62 to 68%
- Physician Global Assessment (PGA) scores improved in 5 of 12 patients, including 1 moderate disease patient with full disease clearance, and stable in the others


	KT-474 Part C	Placebo Benchmarks Week 4	Adalimumab Phase 2 and 3 Week 4
∆AN Count	-46 to -51%	-15%1	-31%1
AN Count 0/1/2	42 to 50%	24 to 26% ³	28 to 47% ^{2,3}
HiSCR50	42 to 50%	19 to 30% ^{3,4}	29 to 51% ^{3,4}
HiSCR75	25 to 30%	5% ⁴	20%4
Pain NRS30	50 to 60%	18 to 23% ^{3,5}	39 to 58% ^{2,3,5}
$\Delta Peak Pruritus NRS$	-62 to -68%	N/A	N/A

¹Kimball AB, et al. Ann Intern Med 2012;157:846-55; ²Morita A, et al. J Dermatol 2021;48:3-13; ³Kimball AB, et al. NEJM 2016;375:422-434; ⁴Glatt S et al. JAMA Dermatol 2021;157:1279-88; ⁵Scheinfeld, et al. Derm Online J 2016:22; The Adalimumab clinical trial was conducted by other parties in a similar patient population with different enrollment criteria from Part 1C of our Phase 1 clinical trial evaluating KT-474. Results do not reflect a head-to-head trial and are shown for illustrative purposes only

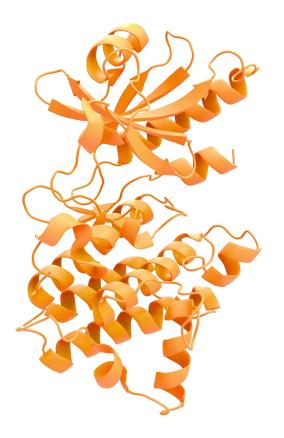
ly ©2025 Kymera Therapeutics

Robust Clinical Impact in AD After Only 28 Days of Dosing

EASI score reduction of up to 36% and pruritus reduction of up to 63% in moderate to severe AD patients

KT-474 Showed Meaningful Signs of Clinical Activity in AD, Comparing Favorably to Placebo Benchmarks and SOC

Summary Results


- Mean EASI score reduction up to 37%, with maximum reduction of up to 76%
- Mean peak pruritus NRS reduction of 52 to 63%
- Peak pruritus NRS Responder rate of 57 to 71%
- Investigator Global Assessment (IGA) scores improved in 2 of 7 patients and remained stable in the others

	KT-474 Part C	Placebo Benchmarks Week 4	Dupilumab Phase 3 Week 4
ΔEASI	-37%	-12 to -25%*	-52% ¹
$\Delta Peak Pruritus NRS$	-52 to -63%	-11% ¹	-34% ¹
Peak Pruritus NRS Responder	57 to 71%	4 to 17%**	23 to 40% ^{1,2}

*Range from 7 different Phase 2 and Phase 3 trials; **Range from 10 different Phase 2 and Phase 3 trials; ¹Simpson EL, et al. *NEJM* 2016;375:2335-2348; ²Bieber T, et al. *NEJM* 2021;384:1101-1112; The Dupilumab clinical trial was conducted by other parties in a similar patient population with different enrollment criteria from Part 1C of our Phase 1 clinical trial evaluating KT-474. Results do not reflect a head-to-head trial and are shown for illustrative purposes only

©2025 Kymera Therapeutics KYMERA 57

KT-474/SAR444656: Positioned for Clinical Success

Phase 2b HS Trial (ZEN)

- Double-blind, placebo-controlled
- Up to 156 patients, dosed for 16 weeks
- 2 KT-474 dose arms, 1 placebo arm
- Primary endpoint: % Change in AN Count
- Additional endpoints (select):
 - HiSCR50, IHS4, HS-Skin Pain-NRS30
- Primary completion (est.): 1H 2026

Phase 2b AD Trial (ADVANTA)

- Double-blind, placebo-controlled
- Up to 200 patients, dosed for 16 weeks
- 3 KT-474 dose arms, 1 placebo arm
- Primary endpoint: % Change in EASI
- Additional endpoints (select):
- EASI 50/75/90, vIGA-AD, PP-NRS
- Primary completion (est.): Mid-2026

Sanofi, following a safety/efficacy IA, has expanded the ongoing Phase 2 trials by adding additional doses to more rapidly progress toward pivotal trials

©2025 Kymera Therapeutics KYMERA 58

Oral IRAK4 Degrader: KT-474

Combined Activity of Upstream Biologics (anti-IL-1/18/33/36) in a Pill

Validated Biology

- Mediates signaling through IL-1 and tolllike receptors
- Upstream cytokine blockers with proven clinical activity across many diseases
- Scaffolding kinase at the interface of innate and adaptive immune responses with a variety of functions

Opportunity

- Total potential patient impact¹: >140M patients
- >\$55B in combined global drug sales² opportunity
- Large potential for oral degraders with best in pathway efficacy across Th1-Th17 and Th2 Diseases

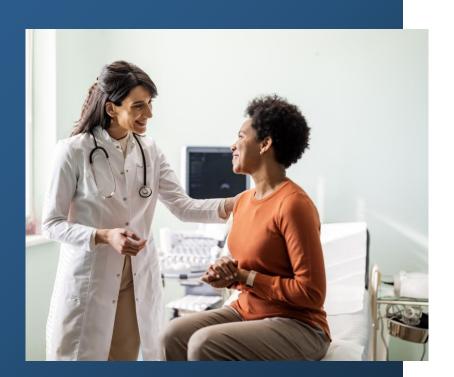
KT-474 Profile

Phase 1 complete:

- Robust IRAK4 degradation
- Favorable safety profile
- Systemic suppression of proinflammatory cytokines and chemokines
- Early signs of strong clinical activity

Upcoming Milestones Phase 2b Completion: 1H 2026 (HS) and mid-2026 (AD)

Pipeline with Clear Line of Sight to Large Value Creation


	Potential Indications	2025		1H 2026	Upcoming Milestones
mmunology – Ora	al QD Small Molecul	e Degraders			
STAT6 KT-621	AD, Asthma, COPD, PN, CRSwNP, EoE, BP, others	degradation in blood & blood	arkers in & skin, efficacy	Ph2b AD Ph2b Asthma	Ph1 HV Data: 2Q25 Ph1b AD Data: 4Q25 Ph2b Starts: 4Q25/1Q2
ТҮК2 КТ-295	Psoriasis, IBD, PsA, Lupus, others	IND Enabling Ph1 HV IND Safe	ety, TYK2 de in blood &		Ph1 HV Start: 2Q25 Ph1 HV Data: 4Q25
Transcription	Lupus, Sjogren's, RA,	▲ IND Enabling		Ph1	FIH: Early 2026
FactorIBD, others	Program & data disclosure	IND	Safety, de in blood		
Partnered with Sa	nofi / Kymera Opt-I	n Potential			
IRAK4 HS, AD, RA,		Ph2b H	S		Ph2b Completion:
KT-4741Asthma,IBD, others2		Ph2b A	D		HS: 1H26 AD: Mid-2026

¹KT-474 (SAR444656) partnered with Sanofi, with Kymera option to participate in the development and commercialization, and 50/50 profit split, in the United States. Double digit tiered royalties in ROW. ²Current indications: HS and AD. Other diseases shown, where IL-1R/TLR pathway has been implicated in pathogenesis, are additional potential opportunities.

KYMERA 60

An Unmatched Strategy for Millions of Patients

Advancing Multiple First-in-Class Oral Degraders That Address Significant Market Opportunities in Immunology

Unlocking high value targets to revolutionize immunology with oral degrader medicines **KT-621, the first oral STAT6-targeted agent in clinical development**, with dupilumab-like activity in preclinical models, has the potential to transform treatment paradigms for the >130 million patients (across ages and severities) suffering from Th2 diseases.

• Phase 1 HV data to be shared in 2Q25 followed by Ph1b AD data and start of the first Ph2b clinical trial in 4Q25

KT-295 has the potential to be the **first oral TYK2 therapy to deliver biologicslike activity** in multiple diseases by replicating loss-of-function human genetics.

• Initiation of Phase 1 HV study expected in 2Q25 with data in 4Q25

Sanofi progressing **KT-474**, the first IRAK4 oral degrader with potential of combined activity of upstream biologics.

• Phase 2b studies in HS and AD expected to complete by mid-2026

Kymera advancing **additional novel immunology programs** in validated pathways for areas of significant patient need.

• New program against an undrugged transcription factor to be shared in 1H25

For additional information contact:

investors@kymeratx.com media@kymeratx.com inquiries@kymeratx.com

KYMERA THERAPEUTICS 500 North Beacon Street, 4th Floor Watertown, MA 02472

Thank You

NASDAQ: KYMR

www.kymeratx.com @KymeraTX

Abbreviations

Ab	Antibody
AD	Atopic Dermatitis
ASMS	Affinity Selection Mass Spectrometry
AN Count	Abscess and Inflammatory Nodule Count
BID	Twice a day
BP	Bullous Pemphigoid
CAPS	Cryopyrin-Associated Periodic Syndrome
CD	Crohn's Disease
CNS	Central Nervous System
COPD	Chronic Obstructive Pulmonary Disease
CRSwNP	Chronic Rhinosinusitis with Nasal Polyps
Cryo-EM	Cryo-Electron Microscopy
Ctrl	Control
CSU	Chronic Spontaneous Urticaria
DC _#	Degradation Concentration
DEL	DNA-Encoded Library
DMSO	Dimethyl Sulfoxide
EASI	Eczema Area and Severity Index
EBV	Epstein-Barr Virus
ΕοΕ	Eosinophilic Esophagitis
EU	European Union
FDA	Food and Drug Administration

FIH	First-in-Human
GLP	Good Laboratory Practice
GOF	Gain of Function
HD	High Dose
HDM	House Dust Mite
HiSCR	Hidradenitis Suppurativa Clinical Response
hPBMC	Human Peripheral Blood Mononuclear Cells
HS	Hidradenitis Suppurativa
HTS	High Throughput Screening
HV	Healthy Volunteers
1&1	Immunology and Inflammation
IA	Interim Analysis
IBD	Inflammatory Bowel Disease
IC _#	Inhibitory Concentration
ICS	Inhaled Corticosteroid
IFN	Interferon
IGA	Investigator Global Assessment
lgE	Immunoglobulin E
IHS4	International Hidradenitis Suppurativa Severity Score
IL	Interleukin
IND	Investigational New Drug Application
IRAK4	Interleukin 1 Receptor Associated Kinase 4
JAK	Janus Kinase
JP	Japan

КО	Knockout		
LABA	Long-Acting Beta Agonist		
LAMA	Long-Acting Muscarinic Antagonist		
LD	Low Dose		
LOF	Loss of Function		
LPS	Lipopolysaccharide Solution		
LTRA	Leukotriene Receptor Antagonist		
MAD	Multiple Ascending Dose Study		
MS	Multiple Sclerosis		
NF-kB	Nuclear Factor Kappa B		
NHP	Nonhuman Primate		
nM	Nanomolar		
NRS	Numerical Rating Scale		
PASI	Psoriasis Area and Severity Index		
PBMC	Peripheral Blood Mononuclear Cells		
Pbo	Placebo		
PGA	Physician Global Assessment		
Ph	Phase		
PK/PD	Pharmacokinetics/Pharmacodynamics		
рМ	Picomolar		
PN	Prurigo Nodularis		
POC	Proof-of-Concept		
PP-NRS	Peak Pruritus Numerical Rating Scale		
PsA	Psoriatic Arthritis		
	©2025 Kymera Therapeutics KYMERA 63		

Abbreviations

PsO	Psoriasis
pSTAT	Signal Transducer and Activator of Transcription
QD	Once a day
QoL	Quality of Life
R&D	Research and Development
RA	Rheumatoid Arthritis
RNAseq	Ribonucleic Acid Sequencing
ROW	Rest of World
SAD	Single Ascending Dose study
SLE	Systemic Lupus Erythematosus
SMI	Small Molecule Inhibitor
SOC	Standard of Care
STAT	Signal Transducer and Activator of Transcription
STAT6	Signal Transducer and Activator of Transcription 6
TARC	Thymus and Activation-Regulated Chemokine
Th1	Type 1
Th2	Type 2
Th17	Type 17
TLR	Toll-like Receptors
TPD	Targeted Protein Degradation
TYK2	Tyrosine Kinase 2

UC	Ulcerative Colitis
US	United States
vIGA	Validated Investigator Global Assessment for AD
WW	Worldwide