

Drugging Tissue-Restricted E3 Ligases

Forward-Looking Statements

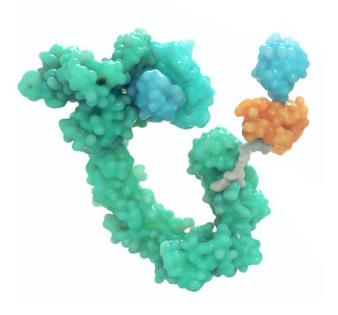
This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 (PSLRA) and other federal securities laws. These statements include information about our current and future prospects and our operations and financial results, which are based on currently available information. All statements other than statements of historical facts contained in this presentation, including express or implied statements regarding our strategy, future financial condition, future operations, projected costs, prospects, plans, objectives of management and expected market growth, are forward-looking statements. In some cases, you can identify forward-looking statements by terminology such as "aim," "anticipate," "assume," "believe," "contemplate," "continue," "could," "design," "due," "estimate," "expect," "goal," "intend," "may," "objective," "plan," "predict," "positioned," "potential," "seek," "should," "target," "will," "would" and other similar expressions that are predictions of or indicate future events and future trends, or the negative of these terms or other comparable terminology. These forward-looking statements include statements about the initiation, timing, progress and results of our future clinical trials and current and future preclinical studies of our product candidates and of our research and development programs; our plans to develop and commercialize our current product candidates and any future product candidates and the implementation of our business model and strategic plans for our business, current product candidates and any future product candidates. We may not actually achieve the plans, intentions or expectations disclosed in our forward-looking statements, and you should not place undue reliance on our forward-looking statements. You should not rely upon forward-looking statements as predictions of future events.

Actual results or events could differ materially from the plans, intentions and expectations disclosed in the forward-looking statements we make. We undertake no obligation to update or revise any forward-looking statements, whether as a result of new information, the occurrence of certain events or otherwise. As a result of these risks and others, including those set forth in our most recent and future filings with the Securities and Exchange Commission, actual results could vary significantly from those anticipated in this presentation, and our financial condition and results of operations could be materially adversely affected. This presentation contains trademarks, trade names and service marks of other companies, which are the property of their respective owners.

Certain information contained in this presentation and statements made orally during this presentation relate to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party studies, publications, surveys and other data to be reliable as of the date of the presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, no independent sources has evaluated the reasonableness or accuracy of the Company's internal estimates or research and no reliance should be made on any information or statements made in this presentation relating to or based on such internal estimates and research.

Outline

- Kymera introduction, platform and pipeline
- Drugging tissue-restricted E3 ligases a Kymera case study
- Summary


Kymera: A Leading TPD Company

- Premier, disease agnostic protein degrader discovery platform
- Key enabling partnerships:

- Initial focus in immune-inflammation (I/I) and oncology
- First company set to dose degrader to healthy volunteers and I/I patients
- Expect 3 INDs and clinical initiations by end of 2021
- First proof-of-biology established in humans in 2021

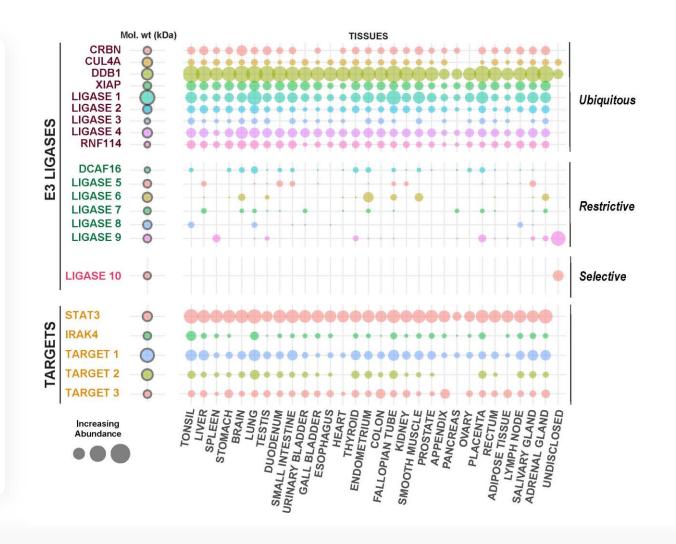
✓ Pegasus: E3 Ligase Whole-Body Atlas

Different expression profiles of E3's provide opportunity for tissue selective/restricted degradation

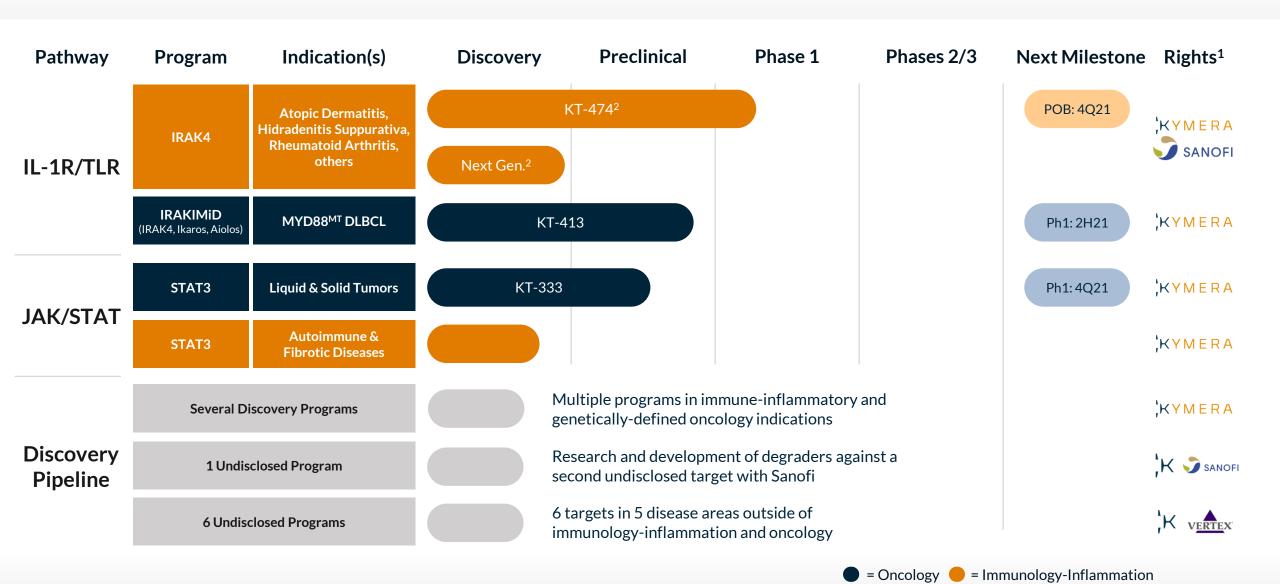
E3 Ligase Whole-Body Atlas

E3 Ligase Binders Toolbox

Ternary Complex Modeling



Quantitative System Pharmacology Model



Proprietary Chemistry

- Focused on determining the expression profiles of ~600 unique E3 ligases
- Patterns mapped in both disease and healthy contexts
- Ability to match a target protein with appropriate E3 ligase based on expression and biology
- Vision to develop tissueselective or tissuerestricted degraders to enable novel therapeutic opportunities

Kymera's Pipeline of Novel Protein Degraders

©2021 KYMERA THERAPEUTICS, INC.

^{1.} Option to participate equally in the development and commercialization of Sanofi-partnered programs in the US.

Current E3 Landscape Today and Limitations

E3 Ligase	Cereblon	VHL	IAP	MDM2
Compounds	Thal, Pom	VH032, VL285, and derivatives	LCL161, GDC-0152	Nutlins
		O NH ONH OH	HN—NH O S N F	CI NH H N OH
	Thalidomide	VH032	LCL161	Idasanutlin
MW	258	431	500	616
LogP	0.02	0.85	3.78	4.50
PSA	109	84	91	112
Limitations	iMiD Biology; stability/ epimerization	Peptide-based renders oral BA challenging	Auto-ubiquitination/ NF-kB modulation; cytotoxicity making interpretation of results difficult	On-target biology

- Ubiquitous
 expression is both
 good and bad; can
 increase risk of off target/adverse
 effects
- Desired properties for novel E3 ligands:
 - Low M_W/drug-like properties
 - No cytotoxicity/ neosubstrate effects
 - Spares normal protein homeostasis
 - Tissue sparing

Ligandability Assessment of E3 Ligases

"Targeted protein degradation can only be realized if the structure of the targeted E3 ligases features pockets or crevices with **geometrical** and **physicochemical properties** that allow the binding of a small-molecule ligand."

E3 Ligase Class	Examples	Ligandability Assessment
DCAF	CRBN, DCAF15, DCAF16, EED, DCAF1	WDR domains and related b-propeller structures found in many E3 ligase subfamilies contain pockets that are generally deep and enclosed
ВТВ	KEAP1, KLHL3, KLHL6, KLHL20, KLHL40, KCTD5	BTB-Kelch domain proteins most tractable for drug development, but significant variation in pocket shape and surface charge means differential ligandability
VHL-, SOCS-box	VHL, KLHDC2, KLHDC3, KLHDC10, SOCS6, ASB9	Kelch domain subfamily members have deep pockets (but may favor acidic ligands), while SH2 domain members historically poor ligandability (pTyr).
F-box	BTRC, FBXL3, FBXO44, FBXW7, SKP2	WDR subfamily (FBXW) has good size/shape for ligandability, whereas LRR domains don't provide well-defined pockets
IAP	XIAP, BIRC2, BIRC3, BIRC7, BIRC8	Lots of precedent for ligandability of BIR domains, but earlier degraders induced auto-ubiquitylation and degradation, reducing effect on targeted substrates
APC	CDC20, FZR1/Cdh1	WDR domains and D-box binding site provide good ligandability, but there are concerns about hijacking important cell-cycle regulator
HECT	HERC1, HERC2, ITCH, NEDD4	Compounds binding HECT domains will act as catalytic inhibitors , so focus should be on other domains like RCC1-like domain (RLD) which is related to WDR and Kelch domains, making them ligandable.
TRIM	TRIM2, TRIM3, TRIM21, TRIM24, TRIM58	PRY/SPRY domain has variable ligandability and bromodomain subfamily is highly ligandable.

What Makes an E3 Ligandable at Kymera?

Ligandability: likelihood of identifying a small-molecule binder with affinity < 1 uM

Druggability: *likelihood* of converting the ligand into a degrader with therapeutic potential

Ligandability assessment helps optimize resources towards **POC**

Qualifier

Precedence and Datamining

- Contains ligandable domains/protein family analysis
- Known substrate(s)
- ☐ Known and validated small-molecule

Structure-based Assessments

- ☐ Ligandability score
- ☐ Cryptic pocket available

Experimental/Biophysical

☐ Identified hits from pilot screens

Key Challenges

Precedence and Datamining

- Data reliability, cleanup/curation
- Data integration

Structure-based Assessments

Requires structure of target protein or homology

Experimental/Biophysical

Protein expression/stability

Applying In silico Ligandability Metrics to Rank E3s

			Known	
E3 Ligase	SiteScore	P2Rank	Degrader	PDB Code
Ligase A	1.11	40.1		•
Ligase X	1.11	18.5		•
Ligase B	1.10	35.4		•
Ligase C	1.09	22.9		•
Ligase D	1.09	33.8		•
Ligase E	1.09	21.1		•
Ligase F	1.08	11.0		•
CRBN	1.06	23.7	•	6h0g
Ligase G	1.06	20.5		•
Ligase H	1.04	45.1	•	•
Ligase I	1.04	14.3	•	•
Ligase J	0.93	10.2		•
Ligase K	0.91	9.5		•
Ligase L	0.66	1.3	•	•

- In silico methods can help identify and characterize binding pockets to rank E3s with available structure
- There are E3s with better pocket scores than those with known degraders
- No single metric is ideal for ranking; best used in combination with information from other data sources

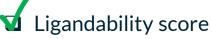
How We Leverage Lead Discovery Strategies to Identify E3 Ligands

	Virtual Screen	DEL	Fragment-Based Screen	Chemoproteomics	нтѕ	ASMS
Screening Strategies	 Criteria Availability of structure or homology model Approaches DB ~8 million purchasable cpds Cloud enables screen < 24hrs Al to improve enrichment 	 Criteria Not amenable to proteins with disordered regions or DNA binding High quality protein Ideal QC profile (single-species by SEC; <5% aggregation by DLS) 	 Criteria Availability of high quality (crystallization-grade) protein Robust crystallization system Approaches SPR, NMR X-ray LC/MS (covalent) 	 Criteria Proteins have reactive cysteines Approaches Covalent fragment screening on recombinant protein Whole cell covalent fragment screening 	 Criteria Available high- throughput assay format Approaches Focused library diversity set 	Criteria • Availability of high quality protein
Hit Validatio Optimiz	on and		ASMS • Rad MST	0	MR •SBI •ray •Che	DD emistry

Degrader Validation

 Degrader design and synthesis across targets AlphaLISA;Cell-based degradation

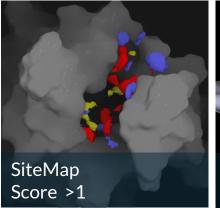
Novel Cullin Ring E3 Ligase Characteristics and Ligandability Asessment

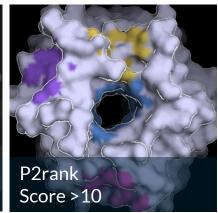

E3 Ligase Type:	Cullin-RING
Known Substrates:	Endogenous substrates
Function:	Confidential
Crystal Structures:	Structure solved
Expression:	Expressed in selected tissues; broadly expressed in cancer cells

Precedence and Datamining

Contains ligandable domains/protein family analysis

- Known substrate(s)
- Known and validated smallmolecule


Structure-based Assessments



☐ Cryptic pocket available

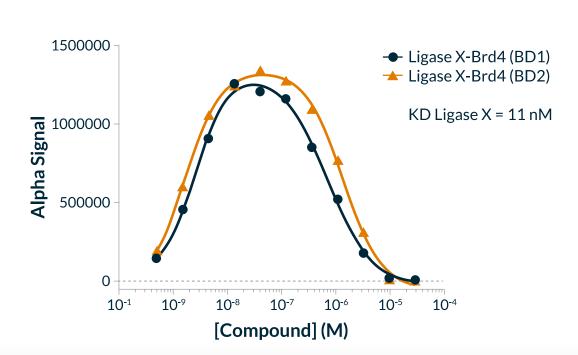
Experimental/Biophysical

Identified hits from pilot screens

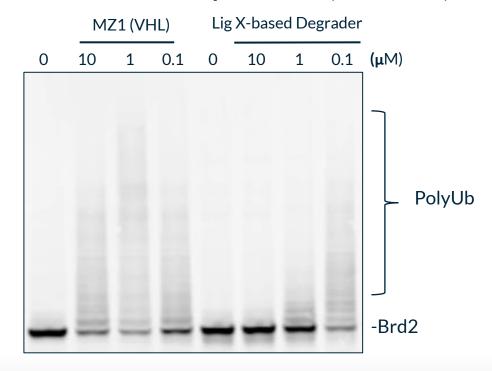
2 orthogonal *in silico* methods suggest pocket is ligandable

SBDD/Hit-finding activities initiated based on ligandability assessment and X-ray system established

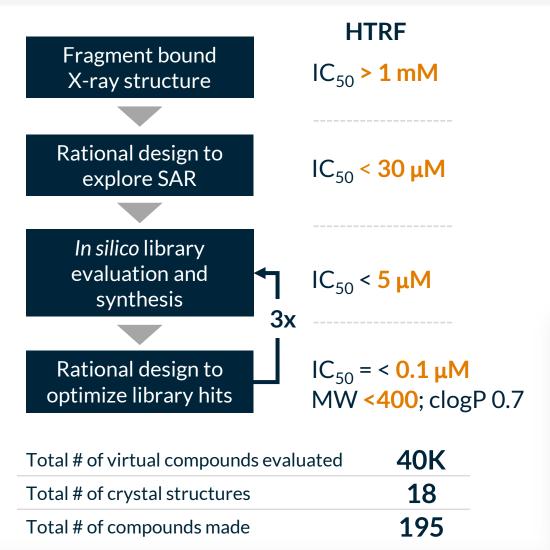
E3 Ligase X is a Low Abundant and Tissue-Restricted Protein, Broadly Expressed in Multiple Cancer Cell Lines

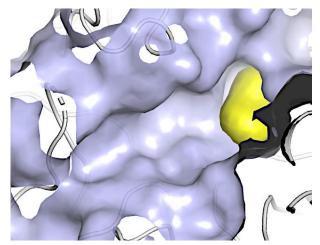


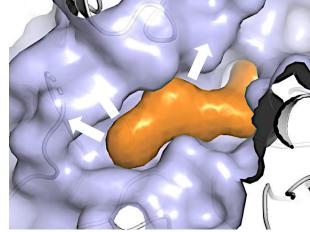
Cancer lines originated from 22 different tissues


Ligase X Peptidomimetic Degrader Promotes Ternary Complex Formation and Brd2 Ubiquitination *In vitro*

Peptidomimetic ligand of Ligase X based degrader provided validation but not suitable start point for hit finding


Ternary Complex Formation - AlphaLISA

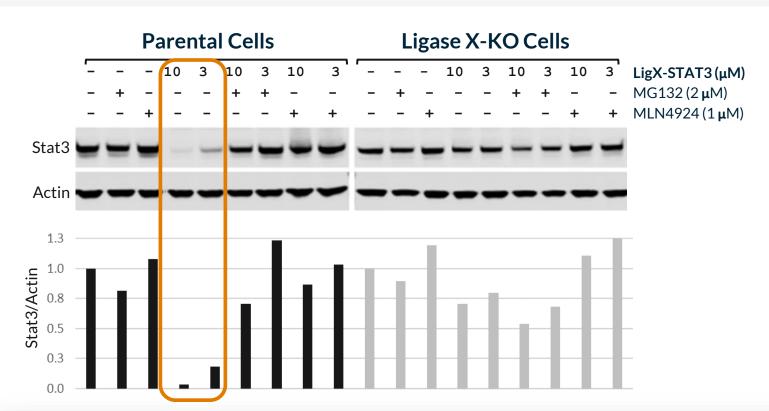



Cell-free Brd2 Ubiquitination (OCI-LY10)

An Early Fragment X-ray Structure Solved along with Virtual Library Evaluation Led to Very Potent Binders of this Target

X-ray with Fragment

X-ray with Optimized Ligand


- Successfully applied SBDD to rapidly identify diverse E3 ligase ligands
- Multiple exit vectors identified and confirmed via chemistry, molecular modeling and X-ray
- Degraders synthesized for BRD4 + additional Kymera targets including STAT3 and IRAK4

Physical properties and in vitro ADME of representative Ligase X ligands

Physical and DMPK properties	Cpd 1	Cpd 2	Cpd 3
Ligase X HTRF IC ₅₀ (μM)	1.9	2.7	0.75
Mw	360	362	349
clogP	2.3	2.5	-0.2
Solubility at pH 7.4 (μM)	271	279	277
HLM Clint (μL/min/mg)	2	<1	2.7
MDCK AB/BA (P _{app}) / ER	0.6 / 0.9 / 1.6	0.6 / 1.2 / 2.1	0.8 / 1.2 / 1.6

Ligase X ligands have low Mw and excellent physical properties

STAT3 Degrader Based on Ligase X Demonstrates Broad Degradation Across Multiple Cancer Cell Types

Cells (Assay)	DC ₅₀ (μM)
A549 (HiBiT)	0.20
Su-DHL-1 (MSD)	0.82
Uveal Melanoma 92-1 (WB)	<1
OVCAR-3 (WB)	0.6
OVCAR-8 (WB)	1.0


- Degrader LigX-STAT3 demonstrated dose-dependent degradation of STAT3, achieving >50% STAT3 degradation at 1 μM.
- STAT3 degradation was rescued by proteasome inhibitor MG-132 or neddylation inhibitor MLN4924, indicating UPS mediated protein degradation
- Knockout of ligase X abolished STAT3 degradation, indicating the degradation is ligase X dependent.

Summary

- Kymera's powerful Pegasus platform has identified the expression profile of 600 unique E3 ligases
- The E3 ligase Atlas is able to identify novel E3 ligases based on expression, distribution, and intracellular localization
- E3 Ligase X has restricted expression across tissues and cell lines
- An early fragment crystal structure and virtual library evaluation enabled an SBDD campaign to deliver sub 1 uM lead
- STAT3 degraders based on ligase X demonstrate degradation across multiple cancer cell types

THANK YOU

